
The IsoGrid: Scalable Mesh

Networking for a Better World
By Travis.Martin@isogrid.org

Version 0.235

1 Abstract

The TCP/IP Internet has:

• High and Unbounded Latency

• Wasteful, Underused Links

• Limited Node/Switch/Hop Counts (no IoT support)

• Low Redundancy

• A Tendency to Centralize Power

• Choke-point Surveillance and Censorship

• Disaster Vulnerabilities

• Tragedy of the Commons

What follows is a free and open proposal for a solution: A new globally-scalable network

protocol with a mesh topology. Instead of being limited to traditional address-routed packets,

the protocol uses source routing to set up bounded-latency isochronous streams avoiding the

problem of congestive collapse. Once a stream is set up, the route is given a numeric name to

support routing micro-packets (µPkt) both directions along the route. To support isochronous

streams across the entire network, the framerate of every link is a power of 2 frequency relative

to TCG time, this opens the door to many new scenarios that require precise relative

timekeeping. Micro-transfers of Energy, which are made ‘by simple agreement’ between each

neighbor along a route, are used to cover sending data across the network, avoiding the

Tragedy of the Commons. Client endpoints are responsible for building up multi-path

redundant link maps through the network, relying on the advertised 3D-Geohash locations of

the nodes to track only a subset of nodes within a given area; providing scalability, redundancy,

and wider distribution of power. The hash-based locating mechanism gives a convenient

solution to distributed data storage. Contrasted with TCP/IP, the new protocol stack’s layering

model provides additional options for streams, packets, safety, reliability, robustness, latency,

and extensibility. Most importantly, the entire protocol was morally designed with its

socioeconomic side-effects as a guide.

This document is an early draft. If you’d like to help improve it, check out the IsoGrid Forum.

mailto:Travis.Martin@isogrid.org
http://isogrid.org/forum

PART I: Introduction

2 What's wrong with Internet Protocol (IP)?
The goal of IP was simple: Create an interop-protocol to connect the world's networks. In this

regard, IP has seen fantastic success. However, it wasn't designed with socioeconomic goals in

mind. Today, when much of global commerce seems to rely on IP, it's tempting to think that

"Anything can run on IP, why not run the IsoGrid on top of IP?" But this would be akin to

asking "Why not build the grid of roads only on top of the hub-and-spoke railway network?"

When you think about the goals of the IsoGrid, you'll see that this is a ridiculous proposal. It's

reasonable to try to rely on the existing IP infrastructure in the early phases of building its

successor: Like the railways connected the cities prior to interstate highway systems.

High and Unbounded Latency
IP switches must decode the entire header of a packet and then do a lookup in routing tables

before the packet can be routed to the next switch. But it's worse than that, with IP, there are no

guarantees that a given packet will be routed within a certain amount of time, or even serviced

at all. If 10 packets arrive on 10 different links at the same time, and all 10 have the same

destination link, then some of the packets need to wait for their turn. If the switch in this case

only has buffers for 8 packets, then the last 2 are simply dropped.

The IsoGrid must provide bounded latency, and must provide low latency even as the

network scales up.

Wasteful Underused Links
The majority of the links that comprise the Internet run at less than 50% utilization. This is

related to the same latency/buffering problem above: In order to have even reasonable latency

and low levels of packet-loss, links must typically be at less than 50% utilization.

The IsoGrid must allow for 100% link utilization without any increase in latency on existing

connections and without suffering congestive collapse.

Limited Node/Switch/Hop Counts
IP has limits on the number of switches, nodes, and hops that make it ill-suited to an "Internet-

of-Everything".

The IsoGrid must have no limits on the number of participating nodes or switches, and

routes must be able to have an arbitrarily large number of hops.

Low Redundancy
Typically, most consumers and businesses have only a single link to the IP Internet. This is often

because there is only one high-speed provider at a given location. But also, Internet links are

mostly paid for by link bandwidth, rather than the actual bandwidth used. It becomes cost-

prohibitive to pay for multiple under-utilized links. Finally, IP itself doesn't have good support

for multi-path.

https://en.wikipedia.org/wiki/Network_congestion#Congestive_collapse

The IsoGrid must promote a mesh topology, where it actually makes sense to have more than

just one link.

Centralization of Power, and thus Wealth
With the IP Internet, Economies-of-Scale make massive centralized services cheaper than

distributed services (even if similarly massive). These centralized services seem to leave little

room for a healthy middle class.

With the IsoGrid, distributed services should be cheaper to provide than centralized services.

Distributed services can spread the benefits of a growing economy more widely.

Choke-point Surveillance and Censorship
Because the Internet and the services running on it are so centralized, powerful governmental

systems have the clear capability to surveil and/or censor it.

The IsoGrid must scale up to have no Choke-points or Check-Points: You should be able talk

with your neighbors without permission from a central authority.

Vulnerable to Disaster

Major damage to a critical building in most major cities is likely to bring down IP Internet

service in the region for weeks or months. War, terrorism, earthquakes, or coronal mass

ejections could all completely bring down the Internet, knocking out both local and long-

distance communications, hindering recovery efforts.

The IsoGrid must not rely on central hubs.

Tragedy of the Commons
The Internet is a Commons, where everyone is expected to behave themselves or face removal

from the network by network admins. This is expensive to police. The biggest example of this is

how it costs practically zero for spammers to send comment and email spam.

The IsoGrid must not suffer from Tragedy of the Commons, it should rely on micro-transfers

of Energy in exchange for accepting requests.

3 Socioeconomic Effects of TCP/IP vs. IsoGrid
It should be immediately clear to the reader that communication protocols, like TCP/IP, have

dramatically changed the world. What is less clear, however, is that the specifics of protocol

design can have wide-ranging social and economic effects, some positive, some negative.

Rail Networks are to Road Networks, as the TCP/IP Internet is to the IsoGrid

3.1 Economies of Scale
Many networks have a design that reinforces economies of scale. One can see this clearly with

the train railroad network: The bigger, more interconnected systems beat out the smaller, less

interconnected systems. This also creates huge barriers for new entrants, making it practically

https://en.wikipedia.org/wiki/Tragedy_of_the_commons

impossible for them to compete against the established providers. We submit that economies of

scale with the present Internet are creating fewer and fewer providers, and concentrating

control in a few individuals in the same way that the rail system of the late 1800s did. This

doesn't have to be the case though. The grid topology of our roadways doesn't seem to have

these same effects. The barrier-to-entry for personal use of the roadways is much smaller

compared to that of the railway providers. How small can we make the barriers to entry in the

telecommunications market?

The Railroads lead to Railroad Tycoons

The Internet lead to Internet Tycoons

Where are the Roadway Tycoons?

In the same way, the IsoGrid is designed to be less effective than the Internet at centralizing

wealth and power.

3.2 Isochronous Streams
The "Iso" in IsoGrid is short for Isochronous, meaning 'same time'. Isochronous means that bits

are sent (and then arrive) at a specific well-defined frequency. A theoretical isochronous stream

running at a frequency of 1 MHz would transmit one word of data every millionth of a second.

Implementations of Isochronous protocols can operate with statically sized buffers, and

bounded latency guarantees. VoIP, Internet video, and Internet radio are best sent over an

Isochronous connection. Over 50% of peak Internet traffic is actually perfectly suited to

Isochronous streams. The early POTS telephone network operated with an analog audio stream,

and so early digital communications protocols that evolved from this network could be

considered Isochronous. However, over time, the world has instead settled on a packetized

asynchronous solution, which is now called the Internet.

Being based on packets, the Internet has terrible support for isochronous connections. This is

why your YouTube movies always need to 'buffer' before playing: It's sending a few seconds (or

more) of the video to the recipient before it starts playing so that it can compensate for the

randomly-timed delivery of packets. If the net had support for true isochronous connections,

then it would be possible to watch YouTube and Netflix videos without having to wait for the

'buffering' to complete.

3.3 Topology
At its core, Internet Protocol (IP) allows a maximum of 255 hops for any packet. This inherently

restricts the topology of the Internet: As it stands, it can never be a world-wide mesh. Instead,

you end up with large hubs and choke-points.

So far, all attempts to create interop standards for nodes that can hop between networks have

been unsuccessful. The IP addressing scheme also makes it very difficult to have a mesh: IP

addresses are assigned hierarchically.

The name "Inter-Net" describes the problem directly: The Internet isn't a global network that

just anyone can contribute or connect to; instead, the Internet is just a protocol for inter-

connecting the world's centrally owned and operated networks.

4 IsoGrid Requirements
The following are the goals and requirements for a new network protocol with a mesh topology

called the IsoGrid.

4.1 Socioeconomic Vision:
• Lower barriers to entry in markets for goods and services that rely on networks

• Empower individuals to improve their lives

• Increase individual freedom

4.2 Primary Tech Requirements
• Very-low maximum-latency bounds

o No overcommit, no oversubscribe
o Always QOS

• Efficiently scales to arbitrarily high bandwidth links

• Efficiently scales to arbitrarily high node/switch count

• Mesh Topology
o Multi-path redundancy
o Disaster Resistant

• Seamless connectivity for mobile and "Internet of Things" nodes

• Avoid global protocol mandates that limit economic freedom

4.3 Secondary Tech Requirements:
• Differential GPS everywhere, even indoors?

• Great multi-cast
o Any switch is allowed to be a multi-caster

• Support for asymmetric links

• Enable high-quality crowd-sourced deep-space antenna arrays

• Enable efficient use of long-haul space-based wireless laser meshes

• IP Tunnels over The IsoGrid should be better than existing non-LAN networks with

respect to:
o Reliability
o Latency
o Cost
o Speed

o Security

4.4 Non-Goals:
• Does not need to be limited to wireless networks

• Does not need to be simple, or easy

• Does not need to fit into existing hardware

• Does not need to work easily with existing infrastructure

• Does not need to preserve or promote existing power structures

• Does not need to conform to any 'model' of networking

5 IsoGrid Design Overview
This section outlines a proposed design for a new network protocol with a mesh topology called

the IsoGrid.

5.1 Layers

Layer 0: Physical Layer

• Options include, but are not limited to:
o Ethernet, ATM, USB, etc.
o Tunnels through other networks (like the TCP/IP Internet, etc.)

Layer 1: Link Layer

• Defines how nodes directly communicate with each other across links

• Defines how a µPkt can be sent between two nodes

• Provides for mesh-wide frequency synchronization

• The IsoGrid does NOT mandate a globally-required protocol at this layer

• The IsoGrid does impose generic requirements at this layer

Layer 2: Network (µPkt) Layer

• Defines the extensibility model for µPkt types

• Defines how the network routes µPkts across the IsoGrid

• Defines how nodes send Energy in exchange for forwarding µPkts

Layer 3: Transport (IsoStream) Layer

• Defines how the network uses source routing for Isochronous Streams (IsoStream)

• An IsoStream is switched at the word level, one word at a time

• Defines how nodes send Energy in exchange for switching IsoStreams

Layer 4: Session (EccFlow) Layer

• Defines how remote nodes use IsoStreams to safely and reliably communicate with each

other over an arbitrary time period

• Forward Error Correction coding, safety, and multi-path segmentation

• Defines how nodes use the network transport to distribute routing information

Layer 5: Application Layer

• Globally-Scalable mesh mapping and routing using HashMatchLogMap (HMLM)

• Distributed content addressable storage (CAS)

• Distributed self-certified naming using GetNodeInfoFromLocatorHash

• Higher Layers: All the normal protocols you would expect to run on networks

5.1.1 IsoGrid vs. TCP/IP Comparison

Layer TCP/IP IsoGrid

Application SSH, FTP, HTTP, etc.

DNS

BGP

CAS

GetNodeInfoFromLocatorHash

HMLM

Session/

Transport

TCP, UDP, etc.

EccFlow

IsoStream

Network IP µPkt

Link Point-To-Point, Ethernet, subnet

Broadcast, token ring, ATM, etc.

Point-To-Point only, Isochronous USB,

ATM, Point-to-point Ethernet.

Physical Any Point-To-Point only: Communication

mediums that have collisions aren’t well

suited to IsoGrid

5.2 How it works
The IsoGrid is a mesh network that supports routing of one-way isochronous streams

(IsoStreams) and small packets (µPkts). In order to provide isochronous streams, the IsoGrid

runs with a synchronized frequency, very similar to the way an electrical grid runs on Utility

Frequency (except much higher frequency). The source provides a series of route instructions to

be used at each hop (Source Routing). Each switch along the way uses its route instruction to

establish the IsoStream connection. The µPkt that starts a connection defines the length of the

IsoStream, and how much Energy to send. The IsoGrid network and transport layers are

optimized to support the IsoGrid session layer (EccFlow) which fragments the data, applies a

forward error correction code, and sends the data over many paths across the network. IsoGrid

byte order is Little-Endian, ref COHEN; also the LSB is numbered 0, so: Little-Endian follows

logically and naturally.

https://en.wikipedia.org/wiki/Utility_frequency
https://en.wikipedia.org/wiki/Utility_frequency
https://en.wikipedia.org/wiki/Source_routing
https://www.ietf.org/rfc/ien/ien137.txt

5.3 Energy
To avoid a tragedy of the commons, the IsoGrid allows for exchanging Energy between

neighbor nodes to cover the data sent or processed. This allows tiny transfers to be made among

neighbors instead of having to have a centralized transfer processor.

In the IsoGrid model, each node owns its outbound links (but not really its inbound links), its

CPU hardware, its storage, etc. Each node SHOULD require Energy for use of those resources.

Settlement SHOULD be by simple agreement (there is no required third party).

Nodes MAY require different amounts of Energy for different outbound links.

5.4 IsoGrid Secondary Limitations
No network is without limits. The design of a protocol standard necessitates making tradeoffs

to meet the requirements. Here are some of the known limitations due to the design of the

IsoGrid Protocol:

• Links that use a shared physical medium (ex: those with collisions) aren’t well suited to be

used by the network (too much latency).
o The IsoGrid is best suited for running on top of physical layers that have exclusive

access to the underlying communication medium. Like fiber, copper, and point-to-

point wireless such as 60 GHz

• Highly mobile nodes that want to offer isochronous data transit services might have a

harder time competing against stationary nodes (because route tracking across transient

links might not be scalable)

• A single IsoStream can use no more than the fastest available slot along a route
o However, an endpoint can create multiple connections such that nearly 100%

utilization with EccFlow is possible

• Low-word-rate IsoStreams have higher latency

• Half-Duplex links not supported (except with unacceptably high latency)

• Streams through nodes that move will have non-trivial buffering/timing requirements
o The faster it moves, the more demanding the requirements

• New Links (for example, link tunnels) could take a (longer latency) three-way handshake

(and an Energy amount) for remote nodes to be able to effectively use the new links

• TODO: Add more as new limitations are identified

https://en.wikipedia.org/wiki/Tragedy_of_the_commons

PART II: IsoGrid Protocol Specification

What follows is a free and open specification for a new open network protocol with a mesh

topology.

6 Licensing & Legal
This IsoGrid Protocol Specification (The Protocol) is freely available for all to use as is.

The Protocol, legally speaking, is completely Public Domain: CC0

However, just because you have a legal right to do something, does not mean you should do

something. The right thing to do, morally speaking, is not codified in law.

The Protocol was released to further the following socioeconomic goals:

• Lower barriers to entry in markets for goods and services that rely on networks

• Empower individuals to improve their lives

• Increase individual freedom

In particular, I believe The Protocol, when widely implemented, will further the above goals.

If, in the 10 years following the release of this version of the specification, you want to

implement a change to The Protocol: You MUST make a good faith effort to ensure that your

changes to The Protocol do not undermine the above goals.

The simplest way to do this is to openly declare your intended changes at the IsoGrid Forum,

and see if the community agrees.

Implementing a change to The Protocol that undermines the above goals MUST be considered a

form of corruption; akin to taking more than your fair share from a commons. It MAY be legal,

but you MUST expect negative social consequences if/when this comes to light.

I hereby release these moral conditions for all uses of this version that follow 10 years after this

specification version is first released into the public domain.

7 Definitions
Term Description

Node or

Nexus

A device that interacts with other devices on The IsoGrid using the IsoGrid

Protocol Stack

http://isogrid.org/forum

Link The protocol running on a physical wire or wireless line that connects two

adjacent switches

Switch A device with multiple links that can route data using the IsoStream Protocol.

Generally acts as an automaton by direction from a nearby Nexus Node.

Word The atomic unit of transmission across the network. 128 bits of data, plus 1

additional bit to declare the word valid or invalid.

Slot A 1 word wide logical division of the link's bandwidth, delivered isochronously 1

word at a time.

Each available slot on a link can be allocated to switch a single connection stream

at any given moment.

Input Slot A slot on an input link. Has a matching output slot on the switch on the other end

of the link.

Output Slot A slot on an output link. Has a matching input slot on the switch on the other end

of the link.

Energy Units of approximately 10^-15 watt-years. Used for fairness handling across the

IsoGrid.

IsoStream A one way, End-to-end stream of words that flows isochronously from a source to

a destination across a pre-defined subset of the switches that comprise The

IsoGrid

µPkt Micro-packet, a small (8 word/128-octet) block of data that flows asynchronously

from a source to a destination across the IsoGrid. Contains dynamic data portions

that MUST be modified by the switches along the route.

Frame A Link-Layer logical aggregation of individual isochronous slots to be sent

together across a single link.

Note: As a link layer construct, Frames are NOT to be thought of as network

packets; they do NOT route across the IsoGrid network.

Advertise To make something publicly known to any network participant that asks nicely

8 Isochronous Word Format
The atomic unit of transmission across the IsoGrid network layer is called a word. A word is 128

bits of data, with an additional 1 bit to define a word’s validity. The parity of a word is defined

to be EVEN if all 129 bits of the word have an even number of 1 bits. The parity of a word is

defined to be ODD if all 129 bits of the word have an odd number of 1 bits.

Valid words meant for IsoStream payload MUST have odd parity, and are called STRM_ODD

words, or abbreviated as SOWORD.

Valid words meant for µPkt communication MUST have even parity, and are called

MSG_EVEN words, or abbreviated as MEWORD.

The following table shows common words types and their expected parity

Type of word Value Parity Description

NoData Link Defined.

Suggested:

0x0000

MSG_EVEN This isn't necessary, but a Link Layer protocol

MAY find it useful to have a designated word

that indicates no data is available on a slot. Or

as a delimiter between µPkts.

µPkt Node Defined MSG_EVEN µPkt data sent from one switch to the

neighbor switch using a Link Layer protocol.

Not part of an IsoStream, but may mark the

start of an IsoStream.

InitIsoStream

µPkt

Semantics

defined by

IsoGrid

Protocol

Sent by Source

Node

MSG_EVEN These words initialize the Energy transfer and

initial word count of an IsoStream. The

required members and their semantics are

specified in this document, and the values are

produced by the source node.

IsoStreamRoute Switch Defined

Sent by Source

Node

STRM_ODD These tags are defined and advertised by each

Nexus to describe each step of a route that an

IsoStream is going to take through the

network.

IsoStreamHeader Source Defined

STRM_ODD These words are sent by the source as a series

of headers to the payload of an IsoStream.

IsoStreamPayload Source Defined STRM_ODD These words are sent by the source as the

payload of an IsoStream

Lost/Corrupted

IsoStream*

LostWord

(0x0000)

MSG_EVEN If an IsoStreamRoute, IsoStreamHeader, or

IsoStreamPayload word is lost or corrupted

along the route through the network, that

word MUST be replaced with LostWord to

signal this fact to the destination.

8.1 Alternatives to Parity
It is acceptable to substitute equivalent implementations of the Parity bit at the link layer.

Encoded (or one might say, compressed) in the parity bits is both the concept of validity in

addition to whether the slot holding the word is Allocated (IsoStream vs. µPkt). However, in the

parity implementation, the link layer MUST keep careful track of each slot and have good

recovery code if it misses an IsoStream allocation, because the information can only be

decompressed from the parity bit over multiple frames on a given slot.

Alternatively, a link layer could simplify by using two bits: One Allocated bit, and one Erasure

bit. In this implementation, the word is allocated to an IsoStream (STRM_ODD) if the Allocated

bit is set, or available for µPkt data (MSG_EVEN) if the Allocated bit is 0. Instead of using the

parity of the word to define its validity, it uses an additional Erasure bit for this. The word is

valid if the Erasure bit is 0, and the word is assumed to be lost or corrupted if this Erasure bit is

set. In this way, the link layer doesn’t need to have complex recovery code for when it misses an

InitIsoStream.

9 Link Layer Protocols
There are many possible ways to define a protocol for the Link Layer. The IsoGrid Protocol

Stack does not mandate any specific protocol or implementation at the Link Layer. As such, it is

NOT necessary that everyone in the world agree to any standard protocol(s). Deciding on a

Link Layer protocol is entirely a local decision between two neighbor nodes.

That said, the IsoGrid Network Layer (IsoStream) does impose some non-trivial requirements on

the Link Layer below it:

• The Link Layer MUST meet the Slot Isochronous Standard below

• The Link Layer MUST meet the Slot Frequency Standard below

• The Link Layer MUST meet the IsoGrid µPkt Standard below

Figure 1. Link Layer frames exchanged between two neighbor switches

ASlot1

ASlot2

...

ASlotN

ASlot1

ASlot2

...

ASlotN

...

ASlot1

ASlot2

...

ASlotN

BSlot1

BSlot2

...

BSlotY

BSlot1

BSlot2

...

BSlotY

...

BSlot1

BSlot2

...

BSlotY

Switch

A

Switch

B

Figure 1 shows a generic full duplex link exchanging isochronous frames between two neighbor

switches. Notice how the words on a slot arrive at well-defined periodic intervals and the input

slots are unrelated to the output slots. Also, notice how the number of slots going one way does

not have to match the number of slots going the other way (though often they will).

9.1 Slot Isochronous Standard
The IsoGrid Protocol Stack requires the existence of isochronous slots on all links across the

IsoGrid. An isochronous slot is a 1 word long logical division of the link's bandwidth, delivered

isochronously 1 word at a time.

This means that the words belonging to a slot MUST be sent across the link and arrive at well-

defined 2^n word per second frequencies (where n MUST be a non-negative integer). A Link

Layer protocol MUST define some sort of isochronous frame format logically divided up into

slots:

• A frame MAY contain any number of words

• A frame MAY have all of the words broken into 2, 4, or 2^n slots such that each slot

appears every other frame, or every 4th frame (and so on)

• Concurrently, A frame MAY have all of the words aggregated into a smaller number of

slots, such that 2^n words arrive for a slot every frame.

• A switch MUST be able to identify the slots of a valid frame that arrives on one of its links

• A switch SHOULD be able to identify the slots of a valid frame even immediately

following missed or corrupt frames

• A switch MUST be able to assign an exact total ordering and count to every valid frame it

receives

• Electronics MUST be fast and stable enough such that skipping a frame, or somehow

seeing two when there was only one, MUST be extremely improbable

• A switch MUST advertise the best-case and worst-case word-corruption rates of its output

links

• A switch MAY use error-correction codes to ensure the error rate meets the advertised

value

• A frame MAY contain hashes to determine validity

• A switch MUST be able to detect corruption of frames or words that occurs on its input

links
o Bit error(s) detected in a slot assigned to an IsoStream MUST be re-transmitted as

LostWord.
o If bit error(s) are detected in a slot being used for a µPkt, that µPkt MUST be dropped

and ignored
o A slot MUST have fewer than 1 undetected corruption of a word in every 1024^6

words

• Words from entirely failed links MUST be assumed to be LostWord.

Some example frame format protocols are:

• Statically sized frame:
o Y ordered words, each their own slot

• Negotiation at initialization-time decides a static size of the frame, in words

• Negotiation at any time can dynamically change the size of the frame

The sending switch SHOULD use slots not allocated to IsoStreams to send µPkts to its neighbor

(multi-word µPkts MAY be sent in the same frame in multiple free slots). An InitIsoStream µPkt

MUST be used to specify the size, Energy, rate, slot, and next hop of a new IsoStream.

Some other possible µPkt uses include (but are not limited to):

• Probe for connection availability

• Request/confirm a link reservation

• Send LinkLayerNexusAdvertisement

• Synchronize clocks/frequencies (if used/needed)

• Switch µPkts for a different transport protocol
o Computational µPkts
o Physical location based routes?

• Update link state
o Link drop announcements

• Transfer/exchange Energy

• Check Energy statistics

µPkt data SHOULD be ignored/dropped/failed if uncorrectable errors are detected in a link

layer frame.

The frequency of word arrivals for an isochronous slot MUST be a power of two words/second.

For example, 2^13 = 8,192 words/second, or 2^14 = 16,384 words/second.

But at very high frequency, the precise definition of a second is relevant. The definition of a

second on the IsoGrid is provided by the Link Slot Frequency Standard.

9.2 Link Slot Synchronized Frequency Standard
The IsoGrid system frequency standard is TCG: Geocentric Coordinate Time.

To provide isochronous streams, the IsoGrid runs with a synchronized frequency, similar to the

way an electrical grid runs on Utility Frequency (except much higher frequency).

Switches MUST attempt to lock their link output frame rate using the TCG definition of a

second. However, there are a number of ways that switches MAY meet this requirement.

https://en.wikipedia.org/wiki/Geocentric_Coordinate_Time
https://en.wikipedia.org/wiki/Utility_frequency

9.2.1 Stationary Switches
If a switch is stationary relative to its neighbors and has just a single link, the switch MAY

directly clock its output frame rate synchronized to its input frame rate. The link for these edge

switches MAY be arbitrarily long-lived.

If a switch is stationary relative to some number of neighbor switches, the switch MAY tune an

oscillator with respect to those input frame rates.

The tuned oscillator will be used to set the output frame rate. The neighbors that receive this as

an input will use it to tune their own oscillator, which will be used to set the frame rate of the

input links of its neighbors (including back to the first node). In this way, a stabilizing feedback

loop will work to synchronize the entirety of The IsoGrid. The links for these stationary

switches MAY be arbitrarily long-lived.

To illustrate how this might be implemented within a switch, here are a few examples:

• Combine all the input waveforms and use that combined waveform to tune the output

frequency oscillator

• This waveform feedback could also be a digital process, where the 'fullness' of buffers

determines the 'waveform' phase shift.
o Buffers filling up: Advance the waveform
o Buffers getting empty: Retard the waveform

This frequency synchronization strategy establishes a fundamental tradeoff between the

following:

1. Higher link frame rate

2. Smaller buffers at each hop

3. Longer distance links

4. Higher tolerance for clock drift and clock skew

Longer links have more frames in transit. Higher frequency links also have more frames in

transit. The more frames in transit, the more buffer is needed to accommodate clock instability

versus ideal TCG.

Stationary switches that have an amazingly stabile TCG input SHOULD bias their output frame

rate to attempt to match the TCG frame rate. This is intended to pull its neighbor switches closer

to TCG. The IsoGrid as a whole is reliant on the collective work of all switches with TCG inputs

to ensure the entire network locks to the TCG frame rate over time. Note, this isn’t likely to

suffer from Tragedy of the Commons because there isn’t any common economic reason for

network participants to attempt to skew the network frame rate away from TCG.

9.2.2 Feedback-Mediated Link Frame Rate

Synchronization
Given a Frame Rate, a Link Latency, and the measure of the clock's short-term stability, it's

possible to specify the minimum buffer required to compensate for clock drift and skew.

Here is a basic mathematical expression that expresses the fundamental tradeoffs precisely.

Rate Frame rate of the link, in frames / second

Distance The round-trip link distance, in meters

cmedium Speed of information travel in the transmission medium, in meters /

second

Latency The round-trip latency of the link := Distance/cmedium

ClockStability Clock stability of the switch, expressed as a fraction.

For example: 1 part in a million --> 0.000001

MinBuffer Minimum possible buffer required to accommodate clock drift and clock

skew, in number of frames

MinBuffer = Rate * Latency * ClockStability

In practice, the required buffer will be larger, but it seems reasonable to expect that it's within

two orders of magnitude. If a clock is stable to 1 part in 500,000 (ie. A simple quartz clock), then

even if it takes 100x the MinBuffer, the underlying latency of the link is only increased by 0.02%.

9.2.3 Clock examples
A quartz clock, for example, typically has a short term stability of 1 part in half a million. This

means that a link with one frame of buffer can have up to 500K frames in transit (round-trip)

after which feedback-mediated link sync is impossible. For a 100km link, this leads to a

maximum theoretical 50 mega-frame / second rate (with only 1 frame of buffer).

4 frames of buffer would allow 4 times the number of frames in-transit.

Here, a frame travelling round-trip across a single link is defined to be in-transit up until the

frame is able to be used in the frequency feedback mechanism of its sender.

Clearly, quartz clocks alone aren't stable enough for use with extremely high-rate, long-distance

connections, where link sync can be lost before the frequency feedback loop is able to correct the

issue. A switch MAY mitigate this issue by using larger buffers. Since the number of buffered

frames at the end of a link would be quite small compared to the link itself, quartz clocks are

likely to be good enough for most switches for at least the next decade.

A GPSDO clock, on the other hand, typically has a short & long term stability of 1 part in

300,000,000,000. With this clock, a link with one frame of buffer can have up to 300G frames in

transit (round-trip) before feedback-mediated link sync is impossible. For a 1000km link, this

leads to a maximum theoretical 240 Tera-frames / second rate.

9.2.4 Dealing with bad clocks
Since most switches rely on their neighbors to collectively lock to the TCG frame rate, a switch

with a misbehaving clock will have local impacts. It could potentially cause a group of

neighbors to lose link sync frequently. Since this is a local issue, it can be dealt with at the local

level by the affected neighbors making the choice to stop using the bad clock as a clock

synchronization source. That way, the bad clocked switch alone has the consequences of the bad

clock.

There is no need for a Time Cop :-)

9.2.5 Mobile Switches
Switches that move, but that stay 'near' a starting position, MAY compensate for the movement

with buffers; either logical buffers, or physical buffers (in the form of a longer link distance). In

so doing, they MAY provide arbitrarily long link connectivity.

However, switches that move arbitrarily long distances, MUST have transitory links. These

switches MAY pre-compute the buffer requirements for a transitory link. As the switch

continues to move, it can only maintain the link for so long before the buffers are exhausted.

For a switch that is moving axially between two other switches, it MAY consider clocking the

output frame rate based on the opposing input frame rate. Doing so could allow a smaller

buffer.

9.3 IsoGrid µPkt Standard
The IsoGrid Protocol mandates the ability to transmit a µPkt. However, the specific link-layer

protocol for sending these isn’t globally specified. A bilingual node SHOULD translate between

two switches that don't speak the same link-layer protocol.

All link-layer protocols MUST have some sort of µPkt enveloping mechanism that allows the

switches to agree on where each µPkt begins and ends and to separate the µPkt data from the

slots allocated to IsoStreams.

All link-layer protocol designs SHOULD consider how to version the µPkt enveloping

mechanism.

All link-layer protocols MUST support a means to envelope a µPkt.

All link-layer protocols MUST support a means to envelope the following member that exists

within InitIsoStream and InitIsoStreamByBreadcrumb (see IsoStream layer):

Member Description

IsoStreamWordRate The word rate of the IsoStream expressed as

a power of 2.

The µPkt Types that are supported by the switch MUST be declared in its NexusAdvertisement.

9.4 Initial Linkups
A mobile switch might not have any active links if it arrives at a location without previously

knowing it was heading there (and so it was unable to pre-provision a link). Switches also have

to handle connecting to the network for the first time. A newly arrived switch MAY make a

request to establish a link with a nearby switch. Switches MAY limit the number of these

requests they accept per unit time to avoid abuse such as a denial of service attack. For example,

a switch could require the new switch to:

1. Perform a compute task, or proof of work

2. Perform a data relay task

3. Be in close physical proximity to the switch

4. Make lots of attempts, and the switch only pays attention infrequently at random

intervals

5. Wait a bit of time for any previous requests to complete (requests are simply throttled)

6. Etc.

10 Network Layer (µPkt)
The network layer supports routing of extensible µPkts.

10.1 µPkt Types

• Extendable µPkt Types

• Able to be implemented in hardware

• Exactly 8 words (128 octets) long

• Even if only the sender understands an extended Type, the full µPkt can still make it to the

destination

• Switches can treat a µPkt as a base type if they don't understand the extended version

µPkt Types follow a strict single-inheritance extension hierarchy. At the root of the hierarchy,

µPktRoot primarily holds the 32 bit FullType field: This provides plenty of space for protocol

diversity without having to have centralized assignment of precious numbers. It seems unlikely

that switches will ever support more than a billion different µPkt Types. If it gets to that state,

perhaps a new root or a completely different network layer would be necessary.

This specification defines the routing mechanisms by branching a µPkt Type off µPktRoot:

µRouteByBreadcrumb

All other µPkt types defined in this specification inherit (either directly or indirectly) from these

Types.

It's possible to define additional roots or routing mechanisms, but to have it be useful, all

switches along an IsoGrid route would have to support it: This would be a similar problem to

the IPv4 to IPv6 transition.

Since µPkt Types follow a strict single-inheritance hierarchy, if a derived type adds fields, it

MUST only do so in bits not used by the fields of the base type. Fields are statically sized.

Extensibility design is in the class hierarchy; it isn't designed to exist within the fields. This

design supports parallelizing and pipelining switch implementations: Once the Type is

recognized, the subsequent actions of the switch regarding that µPkt SHOULD require minimal

CPU branching.

10.2 µPkt Type Requirements
Each µPkt MUST be sent over the next link by applying the most-derived types supported by

the next switch. If the next switch only supports a base type, then the µPkt MUST be sent to that

switch formatted as that base type: However, the FullType field and the fields of the extended

type MUST be passed along unmodified. If a switch receives a µPkt with a FullType it's able to

support, it MUST do so, and MUST pass it on to the next switch with the most-derived Type

that the next switch has announced support for.

10.2.1 µPktRoot

FullType: 0x4BD293D2

µPktRoot MAY be declared to be the root of any µPkt.

This has no inherited members, and just consists of the following:

Member Size Word# Offset

Reserved for Link Layer 4 octets 0 0

FullType 4 octets 0 4

µPktEnergy 8 octets 0 8

TickAndPriority 1 octet 1 7

10.2.1.1 µPktEnergy

This is a 64 bit integer value that describes the amount of energy being transferred along with

the µPkt.

To calculate the amount of Energy to provide for a simple µPkt, simply add up all the Energy

requirements along the route.

Requirements:

A. The switch receiving this value MUST deterministically subtract the exact amount of

energy that covers the switch's advertised Energy of handling the µPkt at the given Tick

and Priority

B. If, after the subtraction step, the energy would be negative, the switch MUST fail the

µPkt.

C. Otherwise, the switch MUST forward the resulting value in the µPktEnergy field of the

µPkt sent over the appropriate outgoing link

10.2.1.2 Tick

This field is the lower 2 bits of the TickAndPriority member. This field represents the current

TCG time in 8 second Ticks (modulo 4 because there are only 2 bits). It is used to specify the

approximate time when the µPkt was sent for purposes of deterministic energy transfer.

Requirements:

A. Route advertisements MUST include a validity period specified by start and end times.

B. A switch MUST interpret all values as either the current time or a time in the past (never

a time in the future).

C. A switch MUST accept the three most recent Tick values {current Tick, previous Tick,

and two Ticks ago} as valid.

D. A switch MUST fail all µPkt (with TICK_EXPIRED) that have a Tick value of three Ticks

ago

a. This gives a wide 8-16 second window to traverse the network before the µPkt

would be failed

10.2.1.3 Priority

This field is 4 bits (bit 2 through bit 5) of the TickAndPriority member. This field represents the

desired maximum priority level of the µPkt as decided by the source. A higher number value

indicates a higher priority. 0 is the lowest priority level.

Requirements:

A. Route advertisements MUST include a priority value.

B. A switch MUST always have a valid advertisement for priority 0.

C. If a switch receives a µPkt with a priority value not advertised by the switch, it MUST

accept it as if it were the closest advertised priority below the one sent, leaving the

priority of the forwarded µPkt unchanged.

D. The Energy difference between each consecutive priority level SHOULD be

approximately a factor of 2.

E. The switch MUST use the lowest available priority level at any given moment based on

the utilization level of the switch

a. This means that a µPkt with higher priority will automatically be given the lower

priority energy consumption if congestion is low

10.3 Standard IsoGrid µPkt Type Definitions
The following µPkt Types MUST be supported by all IsoGrid switches. Support for InitIsoStream

and InitIsoStreamByBreadcrumb are also critically required, but this is described in the IsoStream

layer.

10.3.1 µRouteByBreadcrumb

Inherits: µPktRoot

FullType: 0x452EB7CF

This MAY be used to simply have a µPkt follow a previously allocated breadcrumb trail in the

original direction of the route. This µPkt Type isn’t useful until a breadcrumb trail has been

allocated using a different µPkt Type, like InitIsoStream.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

BreadcrumbTrailId 16 octets 3 0

The MSB of the most significant octet of the BreadcrumbTrailId defines the direction: If this bit is

cleared, the direction is the normal (forward) direction. If this bit is set, the BreadcrumbTrailId

refers to the reversed direction of the original route.

10.3.2 µPktWithHopCounter

Inherits: µRouteByBreadcrumb

FullType: 0x4F8F8BE2

µPktWithHopCounter is used to simply count the number of hops along a route.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

HopCounter 4 octets 1 0

10.3.2.1 HopCounter

HopCounter is a 32 bit unsigned integer that counts each hop of the µPkt.

Requirements:

A. Each switch MUST increment this integer by exactly 1 every hop.

B. The originator MUST randomly choose a 32 bit unsigned number.

10.3.3 µPktWithReply

Inherits: µPktWithHopCounter

FullType: 0x4D7B9991

Success Reply: µPkt_Success

Failure Reply: µPkt_Failure

µPktWithReply MAY be used to send a request with a built-in reply and energy for the reply.

Each switch that processes this MUST fail it with OverCongestedReturn if the input coming from

the next hop has used more than 50% of the µPkt reservation. This incentivizes switches to keep

the µPkt reservation appropriately sized to prevent dropped µPkts in practice.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

HopCounter -> µPktId 4 octets 1 0

ReplyEnergy 8 octets 1 8

The HopCounter inherited member is aliased as µPktId for µPktWithReply and all the reply µPkt

types. For the reply types, HopCounter MUST be decremented by each hop.

A client that isn’t fully aware of the Energy requirements of the route is able to send a small

amount of Energy and see how far it goes along the route. The destination MUST send back the

excess Energy (except in the case of an EccFlow setup).

Requirements:

A. If the µPktEnergy exceeds the advertised maximum transfer limit (in either direction), the

switch MUST fail the µPkt with the appropriate error code.

10.3.3.1 ReplyEnergy

ReplyEnergy is a 64 bit value that adds up the Energy needed to send a reply back to the

originating source.

The value is formatted in the same way as µPktEnergy.

Requirements:

A. The originator MUST initialize this value with the amount of Energy that the originator

would need to accept and decode a simple 8 word reply µPkt.

B. Each switch MUST add to this value the advertised amount of Energy that switch would

need to switch a single 8 word simple, data-only, reply µPkt.

C. If ReplyEnergy exceeds µPktEnergy, then the switch MUST fail the outbound µPkt and

reply with µPkt_Failure instead.

10.3.4 GetRouteUtilizationFactor

Inherits: µPktWithReply

FullType: 0xF63FF952

Success Reply: GetRouteUtilizationFactor_Success

Failure Reply: GetRouteUtilizationFactor_Failure

This MAY be used to determine how full a route is.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

MostCongestionLevel 1 octet 3 4

LeastCongestionLevel 1 octet 3 5

MostCongestionHopCount 4 octets 4 0

LeastCongestionHopCount 4 octets 4 4

TODO: Specify member handling

10.4 Standard IsoGrid µPkt Success Reply Type Definitions
The following µPkt success Reply Types MUST be supported by all IsoGrid switches. Support

for InitIsoStream_Success is also required, but this is described in the IsoStream layer.

10.4.1 µPkt_Success

Inherits: µRouteByBreadcrumb

FullType: 0x479E96AA

This MUST be used as the success reply for a µPkt that has a FullType of µPktWithReply. This, or

a type that inherits from this, MUST be used as the success reply for any µPkt that inherits from

µPktWithReply.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

HopCountAtSuccess 4 octets 2 0

µPktId 4 octets 1 0

EnergyAtLastHop 8 octets 1 8

TODO: Specify member handling

10.4.2 GetRouteUtilizationFactor_Success

Inherits: µPkt_Success

FullType: 0x942B5C20

This MUST be used as the success reply for a µPkt that has a FullType of

GetRouteUtilizationFactor. This, or a type that inherits from this, MUST be used as the success

reply for any µPkt that inherits from GetRouteUtilizationFactor.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

MostCongestionLevel 1 octet 3 12

LeastCongestionLevel 1 octet 3 13

MostCongestionHopCount 4 octets 4 0

LeastCongestionHopCount 4 octets 4 4

TODO: Specify member handling

10.5 Standard IsoGrid µPkt Failure Reply Type Definitions
The following µPkt failure Reply Types MUST be supported by all IsoGrid switches. Support

for InitIsoStream_Failure is also required, but this is described in the IsoStream layer.

10.5.1 µPkt_Failure

Inherits: µRouteByBreadcrumb

FullType: 0xEA3835A4

This MUST be used as the failure reply for a µPkt that has a FullType of µPktWithReply. This, or

a type that inherits from this, MUST be used as the failure reply for any µPkt that inherits from

µPktWithReply.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

HopCountAtFailure 4 octets 2 0

µPktId 4 octets 1 0

FailureCode 1 octet 1 4

EnergyAtLastHop 8 octets 1 8

LocatorHashAtFailure 64 octets

(4 words)

4 0

TODO: Specify member handling

10.5.1.1 FailureCode

The FailureCode describes the reason for the failure. Possible reasons are:

Code Value Description

NoSuchRoute 1 The switch doesn’t know how to route the

µPkt

OverCongested 2 The next hop is too congested to send the

µPkt

OverCongestedReturn 2 The return link from the next hop is too

congested to expect a reply for the µPkt (so

it’s being failed early)

EnergyExhausted 3 ReplyEnergy exceeds µPktEnergy

ExceededMaxEnergy 4 µPktEnergy exceeded the maximum the

switch is willing to transfer per µPkt.

InsufficientEnergy 5 The µPktEnergy were insufficient for the

destination to perform the final handling

of the µPkt.

IsoStream_BreadcrumbResourcesExhausted 32 Breadcrumb resource unavailable.

IsoStream_ExceededMaxWordRate 35 The IsoStreamWordRate exceeded the

maximum that the switch supports.

IsoStream_BelowMinWordRate 36 The IsoStreamWordRate was below the

minimum that the switch supports.

IsoStream_ExceededMaxEnergy 37 IsoStreamEnergy exceeded the maximum

the switch is willing to transfer per word

of IsoStream.

10.5.2 GetRouteUtilizationFactor_Failure

Inherits: µPkt_Failure

FullType: 0x4880A458

This MUST be used as the failure reply for a µPkt that has a FullType of

GetRouteUtilizationFactor. This, or a type that inherits from this, MUST be used as the failure

reply for any µPkt that inherits from GetRouteUtilizationFactor.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

MostCongestionLevel 1 octet 6 14

LeastCongestionLevel 1 octet 6 15

MostCongestionHopCount 4 octets 7 0

LeastCongestionHopCount 4 octets 7 4

Note that the above members are more important to have returned to the sender than the

LocatorHashAtFailure member (which would ordinarily take these bit positions within the

packet.

TODO: Specify member handling

11 Transport Layer (IsoStreams)

An example IsoStream across 2 switches (3 links) might look like this:

Source Sends Switch A Sends Switch B Sends Destination Processes as

Payload

* * * *

ME - InitIsoStream µPkt
SO – IsoStreamRoute_A

* * *

SO – IsoStreamRoute_B ME - InitIsoStream µPkt
SO – IsoStreamRoute_B

* *

SO – IsoStreamRoute_B SO – IsoStreamRoute_B * *

SO – IsoStreamHeader0 SO – IsoStreamHeader0 ME - InitIsoStream µPkt
SO – IsoStreamHeader0

SO – IsoStreamHeader0

SO – IsoStreamHeader1 SO – IsoStreamHeader1 SO – IsoStreamHeader1 SO – IsoStreamHeader1

… … … …

SO – IsoStreamHeader9 SO – IsoStreamHeader9 SO – IsoStreamHeader9 SO – IsoStreamHeader9

SO – HeaderEnd SO – HeaderEnd SO – HeaderEnd SO – HeaderEnd

SO – Payload0 SO – Payload0 SO – Payload0 SO – Payload0

SO – Payload1 SO – Payload1 SO – Payload1 SO – Payload1

SO – Payload2 SO – Payload2 SO – Payload2 SO – Payload2

SO – Payload3 SO – Payload3 SO – Payload3 SO – Payload3

SO – Payload4 SO – Payload4 SO – Payload4 SO – Payload4

SO – Payload5 SO – Payload5 SO – Payload5 SO – Payload5

SO – Payload6 SO – Payload6 SO – Payload6 SO – Payload6

SO – Payload7 SO – Payload7 SO – Payload7 SO – Payload7

SO – Payload8 SO – Payload8 SO – Payload8 SO – Payload8

SO – Payload9 SO – Payload9 ME – LostWord No (LostWord)

SO – Payload10 SO – Payload10 SO – Payload10 SO – Payload10

SO – Payload11 SO – Payload11 SO – Payload11 SO – Payload11

SO – Payload12 SO – Payload12 SO – Payload12 SO – Payload12

… … … …

SO – Payload79 SO – Payload79 SO – Payload79 SO – Payload79

SO – Payload80 ME – LostWord ME – LostWord No (LostWord)

SO – Payload81 SO – Payload81 SO – Payload81 SO – Payload81

SO – Payload82 SO – Payload82 SO – Payload82 SO – Payload82

ME – Filler (NoData) ME – Filler (NoData) ME – Filler (NoData) No – Filler (NoData)

ME – Filler (NoData) ME – Filler (NoData) ME – Filler (NoData) No – Filler (NoData)

ME – Filler (NoData) ME – Filler (NoData) ME – Filler (NoData) No – Filler (NoData)

* SO – IsoStreamRoute_A SO – IsoStreamRoute_A No (Footer)

* * SO – IsoStreamRoute_B No (Footer)

* * SO – IsoStreamRoute_B No (Footer)

* * * *

‘*’ Indicates the data word isn’t part of this specific IsoStream (it could be anything).

Read the rows as a type of timeline: A sending switch only has access to the previous and

current rows.

In the above example, the payload being sent to the destination is exactly 83 words, with a 10

word header. The source sent an InitIsoStream µPkt, with the IsoStreamWordCount set to exactly

100 words. Switch ‘A’ handles a 1 word long IsoStreamRoute that points to Switch ‘B’. Switch ‘B’

handles a 2 word long IsoStreamRoute that points to a link heading to the final destination

endpoint. The IsoStreamWordCount is decremented by the amount of IsoStreamRoute header

words used up in the routing process. In this way, with an IsoStream with an initial 100

IsoStreamWordCount, all switches end the IsoStream at the same point in the stream.

Notice in this example, that the link between Switch ‘A’ and Switch ‘B’ lost or corrupted

Payload9, and the destination receives LostWord instead of Payload9. Also, the link between the

source and Switch ‘A’ lost or corrupted Payload80, and thus Switch ‘A’, Switch ‘B’, and the

destination won’t receive Payload80; receiving LostWord instead. This high rate of loss isn’t

expected, but shown merely as an example.

11.1 InitIsoStreamByBreadcrumb
Inherits: µPktWithReply

FullType: 0x466A98C0

Success Reply: InitIsoStream_Success

Failure Reply: InitIsoStream_Failure

InitIsoStreamByBreadcrumb MAY be used to start an IsoStream. All IsoGrid switches MUST

support the InitIsoStreamByBreadcrumb µPkt.

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

IsoStreamWordCount 2 octets 1 4

Requirements:

A. After the InitIsoStream µPkt is accepted, the switch MUST mark the targeted input slot as

an Active IsoStream.

B. The switch MUST allocate the specified number of isochronous slots to support the

specified IsoStreamWordRate.

11.1.1 IsoStreamWordCount

IsoStreamWordCount is a simple integer value describing the number of words to be sent on the

IsoStream. The MSB is reserved and MUST be zero.

Requirements:

A. Each switch MUST remember this value as the remaining words for the IsoStream on this

slot

B. Each switch MUST begin counting the words of the IsoStream with the final (8th) word of

a valid InitIsoStream µPkt

C. After IsoStreamWordCount words the switch MUST look for an IsoStreamContinuation

word in the slot.

D. If the IsoStreamWordCount is greater than the allowable maximum, as advertised by the

switch, the switch MUST fail the IsoStream connection request with the appropriate error

code.

11.1.2 IsoStreamWordRate

The word rate is defined via a link layer protocol (which is not required globally).

Requirements:

A. The rate MUST be a power of two, as in 2 ^ (IsoStreamWordRate) words per TCG second.

B. If the inbound word rate is greater than the advertised supported maximum word rate

of the outbound link, the switch MUST fail the InitIsoStream with ExceededMaxWordRate.

C. If the inbound word rate is smaller than the advertised supported minimum word rate

of the outbound link, the switch MUST fail the InitIsoStream with BelowMinWordRate.

11.1.3 IsoStreamContinuation

This word consists of the following:

Member Size Offset

IsoStreamContinue 1 octet 0

IsoStreamWordCountContinue 1 octet 1

TickAndPriorityContinue 1 octet 2

IsoStreamEnergyContinue 8 octets 8

The IsoStreamContinue field marks the intended use of this word. If the value is 0, the IsoStream

in this slot ends with this word. If the value is ‘1’, the IsoStream continues with the below

requirements.

11.1.3.1 IsoStreamWordCountContinue

The word count of the continued IsoStream encoded as an exponent.

0:7 (8 bit) base2 exponent, biased by 5

The final value is equal to: (1 << exponent) + 5

Requirements:

A. If the IsoStreamWordCountContinue value is greater than the allowable maximum, as

advertised by the switch, the switch MUST set it to the allowable maximum and forward

on the Continuation.

a. Another Continuation on the IsoStream is not possible at this point, but the source

should have enough time to receive the information that the failure occurred.

11.1.3.2 IsoStreamEnergyContinue

This is a 64 bit integer value that describes the amount of energy being transferred along with

the Continuation. To calculate the amount of Energy to provide, simply add up all the Energy

requirements along the route.

Requirements:

A. The switch receiving this value MUST deterministically subtract the exact amount of

energy that covers the switch's advertised energy required to handle a word of IsoStream

at the given Tick and Priority, multiplied by IsoStreamWordCountContinue

B. If, after the subtraction step, the energy would be negative, the switch MUST fail the

Continuation.

C. Otherwise, the switch MUST forward the resulting value in the IsoStreamEnergy field of

the Continuation.

11.1.4 Miscellaneous

Each switch self-declares the number of words it MAY buffer (ideally less than 1 word) when

transmitting the words across the required outgoing slot. The switch MUST advertise this buffer

size.

11.2 InitIsoStream_Success
Inherits: µPkt_Success

FullType: 0x4AC2A8B1

This MUST be used as the success reply for a µPkt that has a FullType of InitIsoStream. This, or a

type that inherits from this, MUST be used as the success reply for any µPkt that inherits from

InitIsoStream.

This µPkt Type has only the members it inherits.

11.3 InitIsoStream_Failure
Inherits: µPkt_Failure

FullType: 0x51AF6D77

This MUST be used as the failure reply for a µPkt that has a FullType of InitIsoStream. This, or a

type that inherits from this, MUST be used as the failure reply for any µPkt that inherits from

InitIsoStream.

This µPkt Type has only the members it inherits.

11.4 InitIsoStream
Inherits: InitIsoStreamByBreadcrumb

FullType: 0x46FDBFD9

Success Reply: InitIsoStream_Success

Failure Reply: InitIsoStream_Failure

To declare a breadcrumb trail, the source MAY use the InitIsoStream Type (or a µPkt that

inherits from it).

In this µPkt Type, the source provides a variable-length series of route instructions to be used at

each hop (Source Routing).

All IsoGrid switches MUST support InitIsoStream (or a µPkt that inherits from it).

In addition to its inherited members, it consists of the following:

Member Size Word# Offset

RouteTagShiftedBits 1 octet 1 6

CurrentRouteTags 16 octets 6 0

NextRouteTags 16 octets 7 0

The BreadcrumbTrailId is used in future µRouteByBreadcrumb µPkts.

The MSB of BreadcrumbTrailId MUST be 0.

The RouteTagShiftedBits defines the number of bits that are unavailable in the CurrentRouteTag

field (because they were shifted out of the word). Initially, this value SHOULD be set to zero.

The next hop’s IsoStreamRoute tag MUST always start at bit offset 0 of word 6. A switch MUST

NOT send a RouteTagShiftedBits greater than 127, and instead MUST wait for the next word of

the IsoStream’s slot to re-fill the completely empty NextRouteTags member.

Requirements:

A. All the requirements of InitIsoStreamByBreadcrumb also apply to InitIsoStream.

B. In the isochronous slot allocated by an InitIsoStream µPkt, the source MUST stream a

series of IsoStreamRoute tags that define the route, one switch at a time.

a. The link layer protocol defines which slot this is

C. The number of bits in each IsoStreamRoute tag consumed by each switch and their

meaning MUST be defined and advertised by the switch.

D. If an IsoStreamRoute isn’t recognized by a switch, the InitIsoStream MUST be failed.

E. If an IsoStreamRoute is recognized by a switch:

a. The switch MUST send an InitIsoStream µPkt that allocates output slot(s) on the

required link which stream the remaining IsoStream words.

b. If the BreadcrumbTrailId is already associated with a different IsoStreamRoute, the

InitIsoStream MUST be failed with IsoStream_BreadcrumbCollision FailureCode.

c. If the breadcrumb cannot be allocated due to lack of resources, the InitIsoStream

MUST be failed with IsoStream_BreadcrumbResourcesExhausted FailureCode.

d. The switch MUST associate the tuple [BreadcrumbTrailId, InputLink] with the

IsoStreamRoute at this hop

e. The switch MUST ensure that the BreadcrumbTrailId sent to the next switch is

unique for the OutputLink

f. The switch MUST associate the tuple [forwarded BreadcrumbTrailId, OutputLink]

with the IsoStreamRoute that heads back to the input link.

i. This allows a µPkt to traverse the reverse path back to the original source.

g. The breadcrumb MUST be usable for subsequent µRouteByBreadcrumb for at least

8 seconds after the InitIsoStream is recognized by the switch

https://en.wikipedia.org/wiki/Source_routing

h. All switches MUST shift-right out their decoded IsoStreamRoute tag and

increment the RouteTagShiftedBits by the size of the decoded IsoStreamRoute tag

i. When the switch receives word #7 the frame counter for the incoming stream

MUST be initialized to the IsoStreamWordCount.

F. RouteTagShiftedBits MUST be strictly less than 128

a. If the value is incremented beyond 127, the switch MUST subtract 128 from

RouteTagShiftedBits and place the forwarded InitIsoStream µPkt in the next frame

so that the next switch receives only the next word of the list of IsoStreamRoute

tags. This is referred to as WordPopped because a word is ‘popped’ off the stream.

b. The frame counter of the outbound stream starts when the forwarded

InitIsoStream µPkt is sent

c. When an active stream was WordPopped, the switch MUST push one last new

word on to the end of the outbound stream when the frame counter completes.

i. This last word MUST contain random bits in the lower 32 bits. The rest of

the bits MUST be zero.

ii. One source of the randomness MAY be an XOR of all frame data up to

this point.

Each IsoStream word is 128 bits (plus an additional parity bit). Many route hops don’t need to

use so many bits, so it’s beneficial to be able to pack multiple smaller IsoStreamRoute tags into

each word. When doing so, the next IsoStreamRoute tag begins at bit 0 of the CurrentRouteTags

member.

When an IsoStreamRoute tag is recognized by a switch, it MUST little-shift out the bits used for

that tag, leaving the next IsoStreamRoute tag starting at the LSB (bit 0) of CurrentRouteTags.

Let's say there's 1,000 octets of IsoStreamRoute (500 hops, 2 octets each hop)

Effect of 2 octet RouteTags on latency at 1MB/s when travelling a 1,000 hop route:

(2 B / 1,000,000 B/s) * 1,000 hops = 2 B / 1,000 B/s = 2ms

11.5 Active IsoStream
While an IsoStream is Active, a switch MUST copy each word on the input slot to the allocated

output slot.

Temporary physical link interference MUST NOT deactivate an active IsoStream.

12 Session Layer: Error Correction Coded Flow
TODO: This section is still a work in progress and may contain raw notes!

The IsoGrid defines a single standard session layer protocol (EccFlow). Much like the TCP/IP

protocol stack defines multiple standard Transport layer protocols (TCP, UDP, etc.), the EccFlow

protocol has options and sub-options that cover the same use-cases (and more).

EccFlow provides the application layer with the capability to create and use one or more

InSessions and OutSessions. Each InSession is presented to the application layer as a series of

packets, and the application can send a series of packets down an OutSession.

EccFlow has a client side and a server side. The EccFlow client has an input ControlSession and an

output ControlSession matched with the opposite on the server side of the EccFlow, through

which top level protocol control messages can be sent to the other switch. The client side is

responsible for the energy required to maintain the EccFlow.

12.1 EccFlow Overview

Once initialized, the EccFlow protocol involves 5 steps on the outbound and the 5 reverse steps

on the input side.

1. The many sessions are formatted into a series of 32+1 octet EccFlowFrames

2. The frames are fed into one or more OutBlockStreams

3. The data is encrypted with AES-OCB

4. The data is encoded with Reed-Solomon (255, 223)

5. The data is segmented into multiple IsoStreams and sent over the IsoGrid to the

destination

At the destination, the streams are reassembled into blocks to be fed into the Reed-Solomon

decoder. Finally, the data is decrypted using AES-OCB and the result of the InBlockStreams are

handed to the EccFlowFramer layer.

Each EccFlow is initialized by the client side with a 3-way handshake that performs a key

exchange and tests the available routes.

OutBlockStream AES-OCB RS (255,223) Segmentation

OutSession1 OutSessionN

EccFlowFramer

ControlSession

InSession1 InSessionN

EccFlowFramer

IsoStream

Reassembly RS (255,223) AES-OCB InBlockStream

ControlSession

12.2 Properties of Sessions
12.2.1 Reliability

TCP's "Reliable"-ness is expensive and ultimately pointless:

It's expensive because retransmits at the transport layer require the network stack to make a

copy of all data as it's being transmitted. It's ultimately pointless because on a low-latency

route, TCP has a very fast timeout if packets start going unacknowledged: If the RTT of the

connection is 5ms, then the connection will get closed after 315ms of unacknowledged packets.

Because of this, TCP connections often get reset, and higher layer protocols are used to keep

longer-term activities moving along. So rather than trying in vain to have the session protocol

keep a connection active for a long time, just focus on making session failures quite rare. It

makes no sense to force the network stack implementation to make copies of all data just to be

able to support retries at the session layer when the session/transport can be made so resilient to

failures.

12.2.2 Ordered

Since the underlying transport and session has no retransmission, the EccFlowSession provides

ordered packets.

12.2.3 Misc

It’s possible to layer TCP or UDP on top of a session to give backward compatibility with

existing application software.

The EccFlow implementation MAY present the application layer with a choice to receive each

inbound session as Raw, Dropping, or Reset. The outbound side has no options available, and

as such these choices have no protocol impact.

Receive option Description

Raw All recognizable packets are delivered to the application layer, even if they

contain bad data (and don't request resend)

Dropping If enough IsoStreams lose data, drop the packet (and don't request resend)

TCP or UDP MAY be layered on top of this option to provide backward

compatibility with existing application logic.

Reset If enough IsoStreams lose data and a packet is dropped, drop the entire

session. This is expected to be the common case (at least for Async

operation), as it has the simplest programming model.

Isochronous Sessions:

• This is an option on the sending side and has no protocol impact

• The sending stack MUST ensure that the EccFlow is sized appropriately to handle all the

Isochronous sessions

• The sending stack MUST check if the system is capable of sending data at this rate

• 1 word to define rate: 7 bits for exponent, biased such that minimum expressible value is

128 octets/s. 9 bit multiplier (with an additional assumed initial 1 'hidden bit'). 0 means

Asynchronous (Dynamic) Flow Control

Asynchronous Sessions Flow Control:

• This is an option on the sending side and has no protocol impact

• EccFlow implementation MUST gauge the rate at which the destination can handle the

data and the rate at which the source can send it

• Allocate (provide Energy for) a ring buffer at the destination

Other EccFlow Responsibilities:

• Building up and tearing down the underlying IsoStreams at the transport layer to try to

keep the buffer approximately half full

• Deciding the cost/benefit of additional ring buffer vs. additional link redundancy

• Maintaining a mutually acceptable Energy balance between the two nodes

• Store the EccFlow context as long as the client has provided adequate Energy for the

server to do so (the server MUST declare the Energy required for such storage)

The EccFlow between two nodes constitutes an arbitrarily long term bi-directional

communication session.

12.3 Congestion Control
TCP contains congestion avoidance and fairness algorithms. Instead of relying on endpoints

implementing a ‘fair’ TCP (which breaks down with malicious nodes), IsoGrid requires

endpoints to provide Energy for their use of the IsoStream (network) layer. So, EccFlow doesn’t

have fairness algorithms.

IsoGrid doesn't exhibit the problem of congestive collapse, because active IsoStreams are able to

use their slot even in the presence of 100% load, and new InitIsoStream requests MUST be

dropped unless they have a higher priority. Higher priority InitIsoStream requests MUST

replace existing low-priority IsoStreams. EccFlow implementations SHOULD consider

dynamically dropping to lower word rates in the presence of congestion on a particular link

(thereby giving preference to alternative routes with cheaper non-congested links). EccFlow

implementations SHOULD consider doing this randomly, with a lower probability at medium-

high congestion, and the highest probability for the highest congestion. This avoids the problem

of nodes oscillating traffic above and below some predefined limit.

12.4 EccFlowFramer
The EccFlowFramer operates by creating two buckets of data, isochronous data and

asynchronous data. The bandwidth of the EccFlow is dynamically sized with the following

priorities:

1. Keep all isochronous data moving with minimal buffers

2. Increase the bandwidth to accommodate asynchronous data if there is enough available

for a round-trip time’s worth of additional data

3. Decrease the bandwidth ASAP if there is unused bandwidth

The EccFlowFramer turns the many sessions into a single stream of interleaved isoch & async

packet data frames, called EccFlowFrames.

Each EccFlowFrame consists of a 1 octet preamble and a 32 octet payload fragment. Multiple

consecutive EccFlowFrames can be strung together to form a larger payload. This style of

framing is designed such that the data self-synchronizes to the start of packets even after one or

more corrupted/lost frames. The isochronous nature of the IsoStream layer below means that it’s

not possible to skip a frame without noticing its absence.

Preamble octet bit assignments:

• 1 bit to indicate Change-Session (indicates the presence of SessionId fields)

• 1 bit to indicate Start-of-Packet

• 2 bits for number of additional SessionId octets 0,2,4,8,

• 4 bits for significant part of SessionId

• So, SessionId size is 0.5, 2.5, 4.5 or 8.5 octets

Optional Support:

• Support for larger fragment sizes

• Support for using the 6 least significant bits for:

o Extra 0.75 octets of data per fragment (after the first fragment)

o Splitting a fragment into 2 parts to fit multiple small packets

12.4.1 EccFlowSession Packets

All data session packets MUST have the following structure:

Member Size

PayloadSize 1-15 octets

Payload PayloadSize octets

The PayloadSize member is variable-length in order to handle a wide range of payloads with

minimal overhead. The following table describes the sizing mechanism:

Value of 2 most significant

bits

Rest of PayloadSize

field size in bits

Additional octets after the first

PayloadSize field octet

0 6 0

1 14 1

2 22 2

3 118 14

The structure of Payload is defined by the SessionProtocolId and associated with the SessionId

when a new session is created.

12.4.2 ControlSession Packets

The ControlSession MUST assume packets are formatted with the following statically-sized

structure:

Member Size

Type 1 octet

Payload 31 octets

SessionId of 0 MUST be used to designate the ControlSession in both directions.

The most significant bit of SessionId defines the allocation ownership of the rest of the SessionId

bits. SessionIds with the most significant bit cleared are reserved for allocation by the client.

SessionIds with the most significant bit set are reserved for allocation by the server. A SessionId

only uniquely identifies a session in a specific direction: Two sessions in opposite directions that

share the same SessionId value are probably not related.

If the protocol for a ControlSession packet type requires reliable delivery, the protocol MUST

provide for it. One way to do this could be to track a round trip time estimate and automatically

resend the packet if the expected response isn’t received in time.

TODO: Flesh out the design for the following ControlSession packet types (right now these are

just notes):

• EccFlowFrame initialization parameters

• StartSessionId

o 3 octet AdditionalTypeSpace (must be zero)

o 8 octet ProtocolId

o 2 octet ServiceInstance

o 9 octet SessionIdForRequest

o 9 octet SessionIdForResponse

o Example SessionProtocols:

▪ GetLinkAdvertisement(s)

▪ ProvideLinkAdvertisement(s)

▪ GetBestRoutes

• Alias (rename) a SessionId

• Query support for some App layer service (ProtocolId)

• Announce/confirm support for some App layer service (ProtocolId)

• Packet that tells the receiver what the time counter was at the start of the packet. This

MUST be used by the receiver to ensure that frames sent on two or more underlying

BlockStreams are reliably ordered

o Frames in each underlying BlockStream are both sent and received at very well-

defined frame rate, so it should be relatively straightforward to increment a

counter for each BlockStream every time a frame arrives based on the known

framerate. This counter effectively becomes a simple clock that MAY be used to

perform the required ordering.

o The client MUST send this packet on each relevant BlockStream before attempting

to send data for a single session across two or more BlockStreams. How long is it

good for?

• Ratchet the key

• Announce Energy balance

• Return Errors:

o Unrecognized SessionId received

o Unrecognized ProtocolId

o No instance

o No support for some App layer service

o ? Data was lost for a specific BlockStream

• Retire an old SessionId

o NOT NEEDED: Just re-use it when starting a new SessionId

• ControlSession sequence/ack numbers?

o No, keep the ControlSession protocol simpler and lightweight in the common

case. In the event of lost data on the ControlSession, the sender is expected to

resend whatever is needed.

12.5 EccFlow Initialization
The below specifies the 3-way handshake required to initialize a new EccFlow.

12.5.1 InitEccFlow

The InitEccFlow message has the following statically-sized structure:

Member Size

InitKey 32 octets

InitIV 12 octets

AuthTag 16 octets

 EccFlowId 8 octets

 DelayAccept 1 octet

 TotalStreams 1 octet

 StreamId 8 octets

 SplitEccFlowKey 32 octets

 ReplyIsoStreamWordRate 2 octets

 ReplyIsoStreamEnergy 8 octets

Client sends a set of InitEccFlow messages:

• The InitEccFlow MAY be sent within an IsoStream created via InitIsoStream

o The client MUST terminate the route with the InitEccFlow Tag advertised by the

destination

o For each InitEccFlow, the client MUST provide enough IsoStreamEnergy to cover:

▪ The total Energy to get the InitEccFlow stream delivered to the destination

▪ The total Energy to get the associated AcceptEccFlow stream delivered back

to the client from the destination

• The client MUST create a reasonably large set of initial streams and find as many

independent routes for them as is reasonably Energy-effective relative to desired

redundancy

• The client MUST set ReplyIsoStreamWordRate to the desired IsoStreamWordRate of the

reply AcceptEccFlow

• The client MUST set ReplyIsoStreamEnergy to an amount that the client has calculated

would be at least enough IsoStreamEnergy for the reply AcceptEccFlow to be sent via an

IsoStream all the way back to the client on the reverse BreadcrumbTrailId

• The client MUST set DelayAccept to the amount of time the server should wait to receive

additional streams after receiving the first stream

o This value is encoded as a floating point value: The two LSB encode a multiplier

with an assumed ‘hidden’ 3rd bit, and the 6 MSB encode a binary exponent

o For this value, the unit of time is (1 TCG second)/(2^50)

• The client MUST create a cryptographically random InitKey for each stream and send it

as the first part of the stream

• The client MUST choose a cryptographically random InitIV for each stream and send it

as the first part of the stream

• The client MUST make a copy of InitIV and flip the MSB and call this AcceptIV

• The client MUST choose a cryptographically random 8 octet number, and use it as the

EccFlowId.

• The client MUST choose a cryptographically random 8 octet number for each stream and

use it as the StreamId.

• The client MUST create a cryptographically random 32 octet SplitEccFlowKey for each

stream

o The SplitEccFlowKeys MUST NOT be used for any encryption/authentication yet:

These will be combined later to produce the EccFlowKey.

• The client MUST encrypt and provide the AuthTag of the rest of the message that follows

the AuthTag using AES-OCB with the InitKey.

o The client MUST use InitIV as the IV

• The client SHOULD attempt to time sending the streams such that they arrive at the

server at staggered times, to avoid overwhelming the switches along the route.

o The client SHOULD set DelayAccept to as small a value as possible that still

allows all these streams to arrive at the server given expected network jitter

12.5.2 AcceptEccFlow

The AcceptEccFlow message has the following structure:

Server receives a subset of InitEccFlow messages with matching EccFlowId + DelayAccept values

(perhaps some are lost or corrupted along the way):

• If, after subtracting all the Energy required by the server to process an InitEccFlow

message, the number of would go negative, the server MUST fail the InitIsoStream

message with InsufficientEnergy

• Upon acceptance, the server MUST associate the provided BreadcrumbTrailId with the

EccFlowId + DelayAccept using the same validity period rules as the switches along the

route (specified in the InitIsoStream section)

• The server MUST decrypt and authenticate the rest of InitEccFlow with the provided

InitKey and InitIV

• After waiting the amount of time represented by DelayAccept after the first InitEccFlow

message of the set, the server MUST assemble and send a reply AcceptEccFlow message

• The server MUST set the EccFlowId to match the one provided in the set of InitEccFlow

messages received.

• The server MUST choose a cryptographically random 8 octet number, and use it as the

AcceptId.

• The server MUST include within StreamIdList up to 256 StreamIds of valid InitEccFlow

messages received with the same EccFlowId and DelayAccept.

o If there are more than 256 valid InitEccFlow messages received, the server MUST

choose just 256 of them at random

• The server MUST take InitIV, flip the MSB, and call this AcceptIV

• The server MUST take AcceptIV, increment it by one, and call this StreamIV

• The server MUST include within AuthTagList a series of hash message authentication

codes that each use the InitKey and AcceptIV corresponding to the StreamIds added to

StreamIdList.

o The ordered elements of AuthTagList MUST correspond to the ordered elements

of StreamIdList

o If the StreamIdList contains any fake random StreamIds, these MUST have a

corresponding fake random AuthTagList entry

• The server MUST send this identical assembled AcceptEccFlow message within a

InitIsoStreamByBreadcrumb

o The MSB of the BreadcrumbTrailId MUST be set to 1

o One IsoStream for each BreadcrumbTrailId associated with the EccFlowId (to

provide redundancy)

o The IsoStreamWordRate MUST match the rate requested by the StreamId

Member Size

 EccFlowId 8 octets

 AcceptId 8 octets

 StreamIdList 8 octets * TotalStreams

(MAX 8 octets * 256)

 AuthTagList 16 octets * TotalStreams

(MAX 16 octets * 256)

AuthTag 16 octets

o The IsoStreamEnergy MUST match the amount requested by the StreamId.

o All the remaining Energy from the InitEccFlow should be stored with the EccFlow,

to be used as needed for future messages sent to the client

o Each AcceptEccFlow MUST be sent without a header (the AcceptEccFlow type is

assumed when it’s the first IsoStream reply on the BreadcrumbTrailId)

o The server MUST encrypt the message with the InitKey corresponding to the

BreadcrumbTrailId using StreamIV and append the generated AuthTag to the end

of the message

12.5.3 ConfirmEccFlow

The ConfirmEccFlow message has the following structure:

Member Size

 AcceptId 8 octets

 BadStreamIdList 8 octets * TotalStreams

(MAX 8 octets * 256)

 KeyId 16 octets

AuthTag 16 octets

The client receives a subset of the AcceptEccFlow messages (perhaps some are lost on the way):

• The client SHOULD drop additional copies of redundant AcceptEccFlow messages.

• The client MUST authenticate the set of returned StreamIds

• If the AcceptEccFlow message contains all of the authentic StreamIds, this means none of

the streams were compromised or all of the streams were compromised, either way the

client SHOULD reply right away.

• If the AcceptEccFlow message contains some of the authentic StreamIds, the client MUST

wait enough time to ensure that replies on the slowest route can arrive.

o Once enough time has passed, the client MUST choose only the AcceptEccFlow

message with the highest number of authentic StreamIds

• The client MUST separate the StreamIds into a list of authenticated StreamIds and a list of

inauthentic StreamIds.

• For all the authenticated StreamIds the client MUST XOR together the associated

SplitEccFlowKeys to create the EccFlowKey used for all further encryption and

authentication tagging of the EccFlow.

• The client MUST now assemble a ConfirmEccFlow message

• The client MUST set this message’s AcceptId to the AcceptId within the chosen

AcceptEccFlow message

• The client MUST include within BadStreamIdList each of the inauthentic StreamIds within

the chosen AcceptEccFlow message.

• The client MUST fill the rest of BadStreamIdList with randomly generated (inauthentic)

StreamIds

• The client MUST create a randomly generated KeyId to be used to refer to the EccFlowKey

• The client MUST set AuthTag to a hash message authentication code (HMAC) using

AES-OCB with EccFlowKey

o The client MUST use AcceptId as the IV

• The client MUST send this identical assembled ConfirmEccFlow message within an

InitIsoStreamByBreadcrumb

o One IsoStream for each BreadcrumbTrailId that is to comprise a EccFlowSegment

(selecting the desired/required amount of redundancy for the application)

• Following the ConfirmEccFlow, all future messages on the streams MUST be encrypted

and HMAC tagged with AES-OCB using the EccFlowKey

• Both the client and the server MUST keep EccFlowKey a secret

o TODO: Consider adding a double ratchet over time for better safety

12.5.4 Algorithm Evolution

Over time, the chosen algorithms above may prove to have some deficiencies relative to the

socioeconomic goals of this specification. If this occurs, a new handshake will have to be

defined, say InitEccFlow2, and advertised as a service by nodes that support it. The designers of

any replacement handshake algorithms MUST ensure that it promotes the socioeconomic goals

of this specification.

12.6 Segmentation and Forward Error Correction Coding
The IsoGrid is designed to support sending portions of the data across the mesh over separate

routes. With this in mind, it's good to have more connections to allow for redundancy. But if a

node were to segment the data evenly, that just increases the likelihood that a link failure will

cause data loss. Instead, a segmented EccFlow uses a Forward Error Correcting Code (FEC code,

or just ECC), and with just a bit of overhead, the reassembled EccFlow can be tolerant of link

failures. Desired redundancy can be targeted between 0-32 routes.

The fact that corrupted words are sent as LostWord allows them to be counted as Erasures for

the FEC algorithm, which provides even more (efficient) redundancy.

The concept of a BlockStream is used to abstract the segmentation, ECC, flow rate, and safety

aspects of an EccFlow. One or more BlockStreams can be created to transport the data within the

EccFlow. Conceptually, an OutputBlockStream on the sending side is paired with an

InputBlockStream on the receiving side.

The end-to-end EccFlow data packets at this layer look like this:

1. Data packet frames from the EccFlowFramer go in an OutputBlockStream

2. They are encrypted, auth-tagged, FEC-coded, and segmented

3. They are sent across the IsoGrid network via IsoStreams

4. The enter an InputBlockStream, where they are re-assembled, FEC-decoded, decrypted,

and authenticated

5. Data packets leave the InputBlockStream and are handled by the EccFlowFramer

12.6.1 InitEccFlowSegment

This message type is implied when an InitIsoStream arrives using a BreadcrumbTrailId that

previously handled an AcceptEccFlow message or a ConfirmEccFlow message.

The client MAY include an implicit InitEccFlowSegment message immediately following a

ConfirmEccFlow message within a single IsoStream. InitEccFlowSegment MUST only be sent

within an IsoStream (not within a µPkt).

The InitEccFlowSegment message has the following statically-sized structure:

Member Size

KeyId 8 octets (This field MUST be omitted if this message

directly follows a ConfirmEccFlow message within the

IsoStream)

BlockStreamId / HighIV 4 octets

LowIV 8 octets

 SegmentationType 8 octets

 SegmentationDetails 56 octets

AuthTag 16 octets

BlockStreamId of 0 is reserved (invalid) so that the associated IV can be reserved for use in the

ConfirmEccFlow.

A serverclient BlockStream is invalid if the following is true:

 ((BlockStreamId - (0xFFFFFFFF & AcceptId)) MOD 0xFFFFFFFF) <= 0x7FFFFFFF

A clientserver BlockStream is invalid if the following is true:

 ((BlockStreamId - (0xFFFFFFFF & AcceptId)) MOD 0xFFFFFFFF) > 0x7FFFFFFF

When the sender needs to create an additional BlockStream:

• The sender MUST initially set KeyId equal to the AcceptId of the chosen AcceptEccFlow

message

• The sender MUST choose a SegmentationType that is supported by the receiver

• The sender MUST set SegmentationDetails and LowIV as per the requirements of the

SegmentationType

• The sender MUST use HighIV and LowIV together as a single 12-octet SegmentIV

• The sender MUST ensure that the SegmentIV and EccFlowKey referred to by KeyId forms a

unique pair

• The sender MUST encrypt the SegmentationType and SegmentationDetails members and

set the AuthTag with AES-OCB using SegmentIV and the EccFlowKey referred to by KeyId

Receiver Requirements:

• If the receiver does NOT have a BlockStream with the provided BlockStreamId, a new one

MUST be created with this segment added

• If the receiver already has a BlockStream with the provided BlockStreamId, this segment

MUST be added to it

• The receiver MUST interpret HighIV and LowIV together as a single 12-octet SegmentIV

• The receiver MUST decrypt and authenticate the SegmentationType and

SegmentationDetails members with AES-OCB using SegmentIV, AuthTag, and the

EccFlowKey referred to by KeyId

• The receiver MUST interpret SegmentationDetails as per the requirements of the

SegmentationType

12.6.2 ReedSolomon255p223

Inherits: None

SegmentationType: 0x 4E 01 8E 57

All IsoGrid nodes MUST support this Reed-Solomon (255, 223) ECC segmentation algorithm for

InitEccFlowSegment.

The ReedSolomon255p223 SegmentationType has the following statically-sized structure:

Member Size

FirstBlockCountOfSegment 8 octets

BlockStreamAuthBlockSize 3 bits

BlockStreamSegmentStreak 3 bits

Padding2A 2 bits (MUST be zero)

BlockStreamSegmentId 1 octet

BlockStreamDataSegmentCount 1 octet

Padding2B 5 octet (MUST be zero)

Padding3 8 octet (MUST be zero)

Padding4 8 octet (MUST be zero)

Padding5 8 octet (MUST be zero)

Padding6 8 octet (MUST be zero)

Padding7 8 octet (MUST be zero)

Sender Requirements:

• The sender MUST choose a random 8 octet number with the least significant 8 bits

cleared and store it with the BlockStream as FirstLowIV

• The sender MUST interpret the BlockStreamId/HighIV and FirstLowIV together as

FirstSegmentIV

o The sender MAY make a copy of FirstSegmentIV and call it CurrentSegmentIV

o The sender MUST make a copy of FirstSegmentIV, and call it CurrentAuthBlockIV

• The sender MUST set BlockStreamId to match the ID of the BlockStream to which this

segment will contribute

• The sender MUST set FirstBlockCountOfSegment to the BlockCount at which this segment

begins

o The BlockStream MUST start with a BlockCount member equal to 0

• The sender MUST set BlockStreamAuthBlockSize to the AuthBlockSize of the BlockStream

o Valid AuthBlockSize values are:

Value Octets per AuthBlock Octets of AuthTag

0 64 8

1 512 16

2 4096 16

3 32768 16

4 262144 16

5 2097152 16

6 16777216 16

7 134217728 16

• The sender MUST set BlockStreamSegmentId uniquely for each segment of a given

BlockStream

o Data segments are numbered between 1 and BlockStreamDataSegmentCount

(inclusive) and parity segments are numbered between 224 and 255 (inclusive).

• The sender MUST set LowIV to a previously unused value

o The sender MAY add CurrentSegmentIV together with BlockStreamSegmentId to

produce a previously unused value (decrementing CurrentSegmentIV by 256 after

the set of InitEccFlowSegment messages have been sent)

• If some of the IsoStreams run at a higher rate than other IsoStreams, then the higher rate

segments MUST have BlockStreamSegmentStreak set to a higher value.

o A non-zero value means that the IsoStream backing the InitEccFlowSegment

provides multiple consecutive octets per round of Reed-Solomon block

o Valid BlockStreamSegmentStreak values are:

Value Reed-Solomon segments per IsoStream

0 1
1 2
2 4
3 8
4 16
5 32

6 64
7 128

• The sender MUST set BlockStreamDataSegmentCount to the total number of data

segments that the sender is providing for the BlockStream

o This applies only to blocks numbered FirstBlockCountOfSegment or higher (until

later overridden by an InitEccFlowSegment with a greater than or equal

FirstBlockCountOfSegment)

o BlockStreamDataSegmentCount MUST be a number between 1 and 223 (inclusive)

• The sender MUST create virtual (non-transmitted) segments for all the

BlockStreamSegmentIds numbered both greater than BlockStreamDataSegmentCount and

less than 224; the sender MUST assume these segments to be a string of valid zeros for

the purposes of the Reed-Solomon encoder

The sender MAY want to increase the DataSegmentCount in order to increase the BlockStream

data rate; in order to do this: The sender MAY send one or more new InitEccFlowSegment

streams with the new (higher) DataSegmentCount. The sender SHOULD consider sending more

than one or two of these on multiple independent routes for redundancy.

TODO: Consider if there needs to be a mandatory in-band EccFlow packet that can decrease the

BlockStream rate or if it’s easier to just create a new BlockStream and simultaneously cease the old

one.

Sender streaming requirements:

• The BlockCount of the BlockStream is incremented by one immediately after the last octet

of an AuthTag is processed

• The sender MUST encrypt and AuthTag each AuthBlock of OutputBlockStream plaintext

input stream with AES-OCB using CurrentAuthBlockIV, and the EccFlowKey referred to

by KeyId in order to produce the ciphertext output stream

o The sender MUST append the 8 or 16 octet AuthTag following each AuthBlock of

ciphertext output stream

o The sender MUST increment CurrentAuthBlockIV by one after each encrypted

AuthBlock

• The sender MUST take DataSegmentCount octets of the ciphertext output stream and

(223-DataSegmentCount) octets of zeros and feed them into a Reed-Solomon (255,223)

encoder

o Each round of the encoder outputs 255 octets which MUST be segmented by

feeding one of these 255 octets into each segment IsoStream based on

BlockStreamSegmentId

Receiver requirements when an InitEccFlowSegment is received:

• If the receiver does NOT have a BlockStream with the provided BlockStreamId, a new one

MUST be created with this segment added

o The created BlockStream MUST have a BlockCount member that starts at 0

o The created BlockStream MUST have AuthBlockSize set to

BlockStreamAuthBlockSize

o The created BlockStream MUST have DataSegmentCount set to

BlockStreamDataSegmentCount

o The created BlockStream MUST have a 12 octet member named FirstSegmentIV set

to the combined BlockStreamId/HighIV and LowIV

o The created BlockStream MUST have a 12 octet member named

CurrentAuthBlockIV initially set to FirstSegmentIV

• If the receiver already has a BlockStream with the provided BlockStreamId, this segment

MUST be added to it

o The receiver MUST validate that BlockStreamAuthBlockSize is equal to the

AuthBlockSize of the BlockStream, and MUST drop the InitEccFlowSegment if it is

invalid

o The receiver MUST drop the InitEccFlowSegment if the BlockStreamSegmentId is

both less than 224 and greater than BlockStreamDataSegmentCount

• The receiver MUST begin adding this segment to the BlockStream input based on its

BlockStreamSegmentId after the BlockCount is equal to FirstBlockCountOfSegment

o Data segments are numbered 1 to BlockStreamDataSegmentCount and parity

segments are numbered 224 to 255.

• The receiver MUST set the DataSegmentCount member of the BlockStream to

BlockStreamDataSegmentCount after the BlockCount is greater than or equal

FirstBlockCountOfSegment

• The receiver MUST ignore segments with BlockStreamSegmentIds numbered both greater

than BlockStreamDataSegmentCount and less than 224; the receiver MUST assume these

segments to be a string of valid zeros (rather than erasures) for the purposes of the Reed-

Solomon decoder

• The receiver MUST take BlockStreamSegmentStreak octet at a time from each BlockCount-

aligned segment and feed them into a Reed-Solomon (255,223) decoder: The

DataSegmentCount octets of decoded data MUST be appended to the ciphertext output

stream

o Any completely missing input segments MUST be treated as erasures

o Any LostWord or otherwise corrupted input MUST be treated as erasures

• Following each AuthBlock of ciphertext output stream is an 8 or 16 octet AuthTag

o The receiver MUST decrypt and authenticate each AuthBlock of ciphertext output

with AES-OCB using CurrentAuthBlockIV, AuthTag, and the EccFlowKey referred

to by KeyId

o The receiver MUST increment CurrentAuthBlockIV by one after each decrypted

AuthBlock

12.7 Mitigation for Denial of service attacks against EccFlow
In order to perform a 100% successful DoS, an attacker has to have control over all independent

routes between the EccFlow endpoints. If an attacker only has control over most of the routes,

then the attack is probabilistic, and each attack requires significantly more Energy than the client

has to provide. This makes it economically infeasible to continue to deny service since the client

can just continue to try again.

12.8 LinkTunnel Pattern
Tunneling an IsoGrid link across the IsoGrid between distant nodes can be efficient, with low

overhead. This could make for quicker, easier, and more reliable long distance IsoStreams. This

effectively reduces the hop-count on an IsoStream that traverses the tunnel. LinkTunnels are also

especially useful for creating fan-out links near the self node that can target high-overhead

redundancy over short distances. This is useful because we wouldn’t want to have this level of

high-overhead redundancy for EccFlows that go long distances; rather, they should use low-

overhead redundancy that spreads the error correction codes across more links.

It seems relatively straightforward to layer this on top of an EccFlowIsochSession.

12.9 AnchorForMobile Pattern
Another use for a link tunnel is to anchor a persistent link from a stationary node to a mobile

node.

It doesn’t seem possible to have scalable route determination with a mesh of switches that relies

heavily on dynamic links. As such, long-distance data transport will mostly occur over switches

with reasonably persistent links, or at least predictable links (like satellites). A cell tower or a

Wi-Fi router are typical examples of switches with highly transient links, and as such, endpoints

with highly transient links are generally just called mobile nodes. Fortunately, relying on highly

transient links for only a few hops can be scalable. A simple way to achieve scalability is to

allow for layers of indirection, where data flowing to and from a mobile node is routed through

one or more persistent link tunnel(s) with stationary anchor nodes.

Each anchor node MAY:

1. Answer the question: “Where is the mobile endpoint?”

a. Which IsoGrid nodes is the mobile endpoint near?

b. What are the best routes to get to the mobile endpoint?

2. Provide Energy as needed to sustain the mobile node’s outbound streams

3. Provide a link tunnel to, from, or through the mobile node

In this AnchorForMobile pattern, the anchor node and the mobile node maintain an EccFlow

between each other and use an EccFlowIsochSession as the link layer underlying an IsoGrid

network link. This is only a suggested pattern, and the specific protocol does not need to be

universally supported: The only requirement is that the mobile and anchor nodes MUST agree

to use the same protocol.

12.9.1 Internet of Things Discussion

IoT devices:

• Are cheap

• Are relatively low bitrate

• Have limited power budget

• Might be mobile or stationary

• Aren’t good isochronous switches, so will typically just be endpoints

Each IoT endpoint node will establish links with the X closest compatible IsoGrid node(s).

Mobile IoT nodes should have anchor nodes setup if they want to accept incoming requests, just

like regular mobile nodes. Stationary IoT nodes will setup persistent link(s) to the IsoGrid

node(s) they are closest to.

13 Path Determination for Stationary Nodes
TODO: This section is a work in progress and may just contain raw notes!

This section covers the standardized NexusAdvertisement protocol that facilitates link

advertisements for stationary switches and endpoints. Path determination using mobile

switches on a mesh network might not be scalable, so it is left as an exercise to the reader ☺.

Path determination for mobile endpoints is covered via the AnchorForMobile pattern, where the

paths to a mobile endpoint go through one or more stationary anchor nodes.

A Nexus is a full-featured SoC, with all the SoC aspects like general compute, large storage, and

arbitrary services. The switch is just a HW switch automaton. A Nexus can control many

switches.

LocatorHash is for the full Nexus. All switches know how to route 'upstream' to the Nexus. The

Nexus knows how to route to (and between) each of the switches it controls.

Advertisements are delivered at the granularity of a Nexus.

When a new direct link comes online, each side MUST send LinkLayerNexusAdvertisement with

the new link included. Upon receipt of LinkLayerNexusAdvertisement, the Nexus with the higher

LocatorHash value MUST initiate an EccFlow to the other Nexus node and use it as the transport

for all the following packets. These links MUST be marked as direct (rather than

EccFlowLinkTunnel).

When a Nexus sees a Link to a remote Nexus it doesn't already know about, and it knows how to

reach the source Nexus for a reasonable Energy, it SHOULD use the EccFlow it has to the source

Nexus and request the NexusAdvertisement for the unknown Nexus. Each Nexus MUST announce

no more than 1024 links. Nodes SHOULD assume that other nodes that announce more than

1024 links is lying or defective.

A Nexus MUST never make conflicting NexusAdvertisements; which is defined as two different

NexusAdvertisements where the [TickBeginValue, TickEndValue] ranges overlap, unless the

difference is purely additive. A Nexus SHOULD make a series of NexusAdvertisements where the

TickBeginValue of each successive NexusAdvertisement is equal to the TickEndValue of the

previous NexusAdvertisement plus 1 Tick. A Nexus SHOULD specify a [TickBeginValue,

TickEndValue] range of greater than 1 week. A Nexus MUST deliver its updated

NexusAdvertisements to all its direct neighbors via LinkLayerNexusAdvertisement.

Advertisements are specified as Type-Length-Value binary-encoded hierarchical data. Since the

data is hierarchical, it’s often easiest to display it in human-readable form as XML

The first two (MSB) bits of Type defines the size of Type: 14-bit, 30-bit, 62-bit, or 126-bit

The Length Field is half the size of the Type field rounded up to the nearest byte.

14-bit Types are valid when contained in any size Type field

30-bit Types are valid when contained in a 30-bit, 62-bit, or 126-bit Type field

62-bit Types are valid when contained in an 62-bit or 126-bit Type field

126-bit Types are obviously only valid within a 126-bit Type field

The 4 classes of possible [Type][Length][Value] ordering and total lengths:

[2 byte][1 byte][0 to 255 bytes]

[4 byte][2 byte][0 to 65535 bytes]

[8 byte][4 byte][0 to (2^32)-1 bytes]

[16 byte][8 byte][0 to (2^64)-1 bytes]

NexusAdvertisement:

• <SPHINCS Signature> (41,000 octets)

• LocatorHash (64 octets)

• PublicKey (1056 octets)

• Optional Text location (64 octets)

• 3DGeoHash (10 octets)

• TickBeginValid (4 octets)

• TickEndValid (4 octets)

• µPkt Type Declarations (16 + 4 + 12 octets each [TypeID + Energy + TypeSpecificData])

• Service Declarations: (16 + 16 + 4 + 12 octets each [ServiceID + Tag + Energy +

ServiceSpecificData])
o LinkAdvertisement
o InitEccFlow
o InitEccFlowSegment

• <DirectNexusLink> : List of Nexus nodes to which the local Nexus specifies a link
o LocatorHash (64 octets)
o Index (or are these just counted?)

• SwitchN:
o 3DGeoHash (10 octets)
o LinkN:

• Tag

• TagBits

• 3DGeoHash of Destination Switch (10 octets)

• Index of Nexus for Destination Switch

• Flags (1 octet)

▪ Direct or EccFlowTunnel (1 bit)

• Lowest Supported Rate (1 octet)

• Highest Supported Rate (1 octet)

• Review the Slot Isochronous Standard for other requirements

• Maximum IsoStreamWordCount (2 octets)

• Count of switching buffer size (in words), expressed as an exponent (1 octet)

• Minimum supported WordCount(IsoStreamRoute) - WordCount(InitIsoStream)

(1 octet)

• Worst Case Latency (4 octets)

• <Price>

• Maximum Energy transfer expressed as 16-bit floating-point (2 octets)

• µPkt Energy expressed as 16-bit floating-point (2 octets)

• IsoStream Energy required per word expressed as 16-bit floating-point (2

octets)

• <TickPeriodOverride>

• <MonthOverride>

• <DayOfMonthOverride>

• <DayOfWeekOverride>

• <TimeOfDayOverride>

• <ElementExpiration>: Expresses the Tick at which the element is no longer

valid

Overrides can be nested, and order matters: The first Override at a given level to apply to a

given Tick takes precedence.

LinkLayerNexusAdvertisement:

Same contents as NexusAdvertisement. Sent via Link Layer protocol agreement. No Energy

required because neighbors can be friendly (and avoid spamming each other).

13.1 Earth 3D Cartesian GeoHash
This coordinate system uses 10 octets to specify the general location of anything on the surface

of the earth.

Origin: Center of mass of the earth

Spin: Exactly equal to the spin of the earth.

1st bit: Z - Positive axis toward north pole (0 := southern hemisphere, 1 := northern hemisphere)

2nd bit: X - Positive axis towards equator at 0deg longitude

3rd bit: Y - Positive axis towards equator at 90deg longitude

The bounds of each axis is from 0 to 2m^23=8,388,608m.

Thereafter, every third bit refers to the relevant axis, and the bounds are bisected like a normal

GeoHash.

78 bits gives 500cm precision anywhere within a bounding box 2m^24 on a side centered on the

Earth. This covers the surface of the Earth. The node SHOULD attempt to set the 3DGeoHash to

be accurate within 1m.

A different location mechanism needs to be defined for mobile switches like comsats, airplanes,

and boats.

13.2 LocatorHash
The NexusAdvertisement contains the ID of the node, represented as a 64 octet LocatorHash. The

last 10 octets form the Planet and Key Standard of the LocatorHash:

1. GravityBody: {Sun, Planet, Lagrangian point, etc.} (2 octets)

a. Body (13 bits)

b. GravityNexus (3 least significant bits)

2. Key Standard (8 octets)

The Body field specifies the gravitational body of the solar system to which the LocatorHash is

relative to. The large gravitational bodies in the solar system are numbered (in order of

decreasing mass): Sun (0), Jupiter (1), Saturn (2), Neptune (3), Uranus (4), Earth (5), Venus,

Mars, Mercury, Ganymede, Titan, Calisto, Io, Moon, Europa, etc…

Each Body is further subdivided into one of 8 GravityNexus values:

Value Meaning

0 The center of mass of the Body
1 The L1 Lagrangian between the Body and the Body it orbits
2 The L2 Lagrangian between the Body and the Body it orbits
3 The L3 Lagrangian between the Body and the Body it orbits
4 The L4 Lagrangian between the Body and the Body it orbits
5 The L5 Lagrangian between the Body and the Body it orbits
6 Reserved
7 Reserved

The Key Standard defines the specific standard method used for hashing and the Public Key

type.

The other 54 octets provide a KeyHash with a meaning specific to the Key Standard.

The following shows the length of a full LocatorHash as written for IsoGrid in Base64:
\\12345678901234\123456789112345678921234567893123456789412345678951234567896
123456789712

13.3 Earth SPHINCS-256 Public Key Hash Skein-512
Key Standard: 0xA2FF41EBB3ED0735 (TODO: Spell something readable in Base64)

“\e\” == “EarthCenter\0xA2FF41EBB3ED0734\”

\e\123456789112345678921234567893123456789412345678951234567896123456789712

The Nexus’s PublicKey MUST use SPHINCS-256, which is a Hash-based (post-quantum)

egalitarian public key signature system.

The KeyHash MUST be the first 54 octets of the Skein-512 hash of the Nexus’s full PublicKey.

The least-significant 16 (<CONFIRM THIS>) bits of the hash MUST be zero in order to be

considered valid. This forces a compute cost to creating new identities which can help prevent

some types of Sybil attacks. The IsoGrid Foundation SHOULD change the Key Standard every

so often to require higher numbers of trailing zeros over time: This exercises the extensibility

mechanisms and also creates an ongoing cost to Sybil attacks.

13.4 Methodically Verified Routes
Routing information that has been built up hop by hop via EccFlow to each Nexus is called a

verified route. It’s called ‘verified’ because EccFlow uses multiple unique IsoStream routes and

secret splitting to be reasonably certain that the node, switch, and link information it receives is

authentic. The only uncertainty would be the possibility of widespread collusion among

neighboring network participants.

13.5 Just-In-Time Routes
Building up verified routes to a far-away Nexus could be a time-consuming process. One option

to avoid this is to use a Just-In-Time route determination algorithm as described in this section.

When a node purchases from any remote node a description of a route between two remote

nodes, that route is not verified because the level of collusion required to successfully perform a

man-in-the-middle attack is likely smaller. Additionally, colluding nodes could agree to send

routes through higher-Energy conspirators.

This is called a “Just-In-Time” route, because it is possible to build up routes to far away nodes

with relatively few round trips just prior to initiating communication.

A partial strategy to mitigate the increased risks of using Just-In-Time routes might be to:

1. Use many of them with an EccFlow layered on top

2. Prioritize finding unique routes (instead of inexpensiveness or low latency) for the

InitEccFlow handshake.

3. Switch to inexpensive routes after the EccFlow is established

4. Purchase many routes from multiple nodes at random

13.5.1 Session Protocol: GetBestRoutes

Nodes MAY use the GetBestRoutes EccFlowSessionProtocol to ask a remote node for the best

route(s) between a source and a destination node.

GetBestRoutes is an EccFlowSessionProtocol that MAY be initiated via a StartSession packet on the

ControlSession. If the recipient understands this SessionProtocol it MUST acknowledge the

message with a MultiRouteContainer. If the recipient does not find any routes, it MUST respond

with an empty MultiRouteContainer. If the recipient does not understand the request, it MUST

respond with UnsupportedSessionProtocol.

The recipient SHOULD attempt to find the best routes between the provided source and

destination based on the criteria in the GetBestRoutes message.

The following packet data MUST be sent on the session specified by the SessionIdForRequest in

the associated StartSession packet.

Field Name Size Description

RequestedRouteCount 1 octet The number of routes to attempt to find

SourceLocatorHash 64 octets The LocatorHash of the start of the route

DestinationLocatorHash 64 octets The LocatorHash of the end of the route

MaxEnergyLimit 4 octets

MaxNodeReference 2 octets Maximum number of times that a single node

can be referenced within a route

MaxLatencyLimit 4 octets

MinEnergyTransferLimit 4 octets

MaxIsoStreamHeaderLimit 4 octets

RangeRateLimit 2 octets

MinWordCountLimit 2 octets

MaxHopCountLimit 2 octets

This message has three Energy components: A base component, Energy per returned complete

route, and Energy per partial route. No Energy is used if the recipient responds with

UnsupportedSessionProtocol. The multiplier only applies to the number of returned routes.

If the recipient has a verified route to the Destination, it MUST set IsSingleDestination := 1.

If the recipient doesn’t have a verified route that goes all the way to the Destination, then the

recipient MUST set IsSingleDestination := 0, and provide its verified routes to the unique nodes

closest to the destination node.

The response MultiRouteContainer packet structure MUST be sent on the session specified by the

SessionIdForResponse in the associated StartSession packet.

13.5.2 MultiRouteContainer

MultiRouteContainer is a packet structure used to transmit a list of routes.

Field Name Size Description

SourceLocatorHash 64 octets

IsSingleDestination 1bit 1: Only a single destination node is included

0: Each route leads to a different destination

DestinationLocatorHash 64 octets (Included only if IsSingleDestination == 1)

RouteCount 2 octets The number of routes in the container

Routes Variable The list of routes:

 DestinationLocatorHash 64 octets (Included only if IsSingleDestination == 0)

 RouteEnergy 8 octets The total Energy required by the route

 RouteLatency 4 octets The total latency of the route

 RouteEnergyTransferLimit 4 octets The most Energy that will be transferred by

the route

 RouteRateRange 2 octets The range of rates available in the route

 RouteWordCountLimit 2 octets The maximum word count limit of the route

 RouteHops 4 octets The length of the route in hops

 RouteIsoStreamHeaderLength 8 octets The length of the IsoStreamHeader needed to

establish an IsoStream

 IsoStreamHeader Variable The IsoStreamHeader used to establish a

stream between the source node and the

destination node.

13.6 Discussion on Scalable Verified Route Determination
The trivial plan of methodically sending link advertisements to all nodes on the IsoGrid is likely

to work for some time (while IsoGrid node counts are low). Each node is likely to be able to

keep up with 100,000 or more nodes with relatively persistent links. If the number of nodes on

the IsoGrid rises high, or the Energy demand of sending advertisements rises too high, or the

frequency with which links are changed is too high, nodes will have to be smarter about where

they spend their resources distributing and keeping up with verified routing data. A few ways

nodes could be smarter about verified routing data are described here.

It’s important that the chosen solution avoids any negative socio-economic effects.

13.6.1 Random Trailblazing

DEPRECATED: The ‘random trailblazing’ idea has been deprecated in favor of HMLM (in the

section below this one).

The 'home' node SHOULD use the following algorithm to create a spider-web like grid of

verified routes through the rest of the IsoGrid:

• Start with a small distance limit from the 'home' node and proactively distribute its own

link updates to all nodes that are within that limit and increase that limit until:
o The maximum number of nodes is reached
o The maximum budget is reached

• Use a 'trailblazing' algorithm like:
o Define a budget for subscribing to link updates, once the budget is exceeded, stop

'trailblazing'
o Start with the 64 closest nodes from the 'home' node that haven't had their links

verified
o Each of these 64 'trailblazers' proceed down hops somewhat round-robin style (slow

down the 'trailblazers' that have X more hops than the others)
o Follow the outbound links at each hop by preferring links using the following

priority rules:

1. Assume that a node that announces more than 512 links is lying or defective

2. Prefer links that don't lead away by more than half the current distance from

the starting node

3. Prefer links that lead to unmapped nodes

4. Prefer links that leads the furthest distance away from the starting node

5. If there's only one non-loopback link left, take it
o If all links lead to mapped nodes start over with the next unmapped node closest to

the home node.
o If a path is a dead-end, back up and choose a different outbound link

• If backing up takes you back to one of the initial nodes, start a new trail by

choosing the next closest node to the 'home' node that hasn't had its links

mapped

• Use a 'trailconnector' algorithm like:
o For every 'trailblazer', there is one 'trailconnector' that attempts to build up an

independently verified mapped trail from the source 'connected' node on the

associated 'trailblazer' to a separate trail.
o The 'connector' destination target is the nearest trail node that is Y meters further

from the 'home' node than the source 'connected' node.
o The first 'connected' source node is the first node of each trail
o Once connected to the nearest trail, the destination node becomes the next

'connected' source node for the 'connector' and Y is doubled

• Let subscriptions to link updates from dead-end nodes (those that aren't part of a trail)

expire

• Whenever establishing an EccFlow to a node takes more than one hop of GetBestRoutes

requests to reach the destination node, the 'home' node MAY consider using one or more

'trailblazers' to setup independently verified trails

• When something at the application layer actively uses an EccFlow to a node, the trail(s)

used are marked with an updated 'last used' timestamp.

• Subscriptions to link updates will not be renewed for nodes along a trail that isn't used for

some time.

13.6.2 HashMatchLogMap Protocol (HMLM)

HMLM is the de-facto standard route discovery algorithm of the IsoGrid. HMLM is to IsoGrid

as BGP is to TCP/IP.

Some ways that HMLM is like BGP:

• They both provide a system for finding routes between any two nodes on the network

• They are both built on top of higher level networking protocols; HMLM uses EccFlow

(the IsoGrid's Session Layer protocol); BGP uses TCP (the Internet's Transport Layer

Protocol)

• Neither protocol defines the network itself but each play a critical part in the scalability

of the route finding system itself

Some ways that HMLM and BGP are different:

• HMLM scales O(log(N)), where N is the number of routers/nodes, but BGP scales

linearly

• BGP is hard to configure and fragile, whereas HMLM is largely self-configuring and self-

healing

• HMLM allows a convenient distributed content addressable storage (CAS) system that

can be used by higher level services

An IsoGrid node has two synergistic motivations to run the HMLM algorithms: 1) It provides a

scalable means for a node to find routes across the IsoGrid on its own behalf, 2) It allows a node

an economic opportunity to provide routing information and distributed CAS to paying clients.

The CAS formed by HMLM is critical for locating content on the IsoGrid. One of the critical

features of this CAS is that it’s easy and logical to find things nearby if they are there before

having to look further and it should converge toward a logical path to optimize caching.

HMLM borrows and extends a lot of ideas from S/Kademlia:

• NodeIds are hashes of the node's PublicKey: See LocatorHash

• Requires a number of trailing zeros in the LocatorHash to be valid (don't need to transmit

these zeros)

• XOR metric (HashMatch), placed into k-buckets

• Set Energy requirements for queries by K-bucket, which allows nodes to know how

much Energy is required to query a given value

a. This is efficient and sustainable because it's a bounded number of hops (one per

k-bucket)

• Two sets of k-buckets: Local and Global

a. Local k-bucket set only includes the C cheapest nodes

1. First find the matchiest LocatorHash among the C cheapest nodes

b. Global k-bucket set includes all peered nodes

HashMatch is a simple math operation that compares two LocatorHash values:

XOR(LocatorHashA, LocatorHashB) as Integer

In words, this operation finds the result of XORing the two LocatorHash values. Smaller is a

'better' HashMatch for purposes of data storage and scalable route tracking.

HMLM Initialization Routine:

1. Initially, HMLM MUST communicate with its direct neighbor nodes to build up a route-

tracked list of some number (C) of the least expensive nodes to access.

a. Estimate the true Energy requirements of nodes based on how long they've been

known (recently created/learned nodes are penalized)

b. Estimate the true Energy requirements of nodes based on how successful they are

at delivering answers to queries (nodes that fail to answer correctly are

penalized)

1. When first starting, use a known tree of lots of data to generate random,

but known-valid, queries. A binary search tree of various extremely large

datasets (like the Internet archive) might be a good choice

2. After startup, grade nodes based on real queries

3. Only follow links with reasonably Energy requirements

c. Select the 256 cheapest neighbors with at least one completely unique outbound

link (breadth-first to optimize for unique paths)

1. Don’t select nodes with only links to one of the other 256 nodes (or any of

the nodes closer to the self node than the 256 nodes

2. EccFlows to these nearby neighbors have a high overhead to provide

multi-path redundancy: Usually higher latency than the direct path, and

the overhead can be high unless the nearby IsoGrid is extremely well-

connected. But this is OK since this high-overhead is limited to short hops

d. Looping over each of these selected 256 neighbors, in cheapest-to-access order:

1. Use Dijkstra’s Algorithm (or similar) to calculate the cheapest paths from

this neighbor to all the other tracked nodes without going through any of

the other 256 selected nodes or any node closer to the self node.

2. Mark the links that are used as the cheapest path as used, so as to ensure

that the next loop uses fully independent links

e. The above operation produces a data structure that can be used to efficiently

retrieve up to 256 of the cheapest link-independent routes from the source node

to any other tracked node

1. Using a PriorityQueue, this is an O(NodeCount + LinkCount) operation.

Considering that the HMLM algorithm as a whole only tracks O(log(N))

nodes of the whole IsoGrid (this is a property of the Find Spiral Best and

Find Global Best algorithms), this is very scalable

2. Note that this algorithm doesn’t guarantee that the routes are node-

independent. An algorithm that guarantees node-independence would

have to make Energy-tradeoffs (like slightly increasing the Energy

requirements of the cheapest route to get a significantly-cheaper

secondary routes). However, in testing a well-connected IsoGrid

simulation with link-independence, these routes are statistically very

likely to be node-independent.

2. HMLM MUST bucketize all nodes by physical location relative to the self, into four

separate BucketSets.

a. Every node will exist in exactly one bucket in each of the four BucketSets (for a

total of four buckets)

b. In the case of overlapping buckets within a BucketSet, a node MUST only be

placed in the smallest bucket

c. Nodes within each bucket are sorted by HashMatch value

• The first set of buckets is called the SpiralBucketSet, and is defined like so:

a. Bucket 1 is the self CoordinateHash

b. Buckets 1-8 are the 7 smallest CoordinateHash cubes that are closest to the self, but

farther from the center of coordinate system

c. The next 56 CoordinateHash cubes are the same size, and completely surround the

first 8

d. The next 56 CoordinateHash cubes have edges twice the size of the last set of cubes

and completely surround them. This step repeats arbitrarily large, but most

nodes will only keep track of less than 2k buckets

e. The buckets are numbered in a well-known pattern, so that other nodes can ask

for specific buckets of nodes

• The next three sets of buckets are the AxialBucketSets. The three sets of buckets are

defined by the three dimensions of the coordinate system; one set of buckets for each

dimension axis. The AxialBucketSet for the positive 'X' axis is defined below:

a. Bucket 0 contains no nodes

b. Bucket 1 is the self bucket

c. Bucket 2 extends away from the self by the smallest CoordinateHash in the

positive X axis

d. Bucket 3 extends the bounds by the smallest CoordinateHash in the positive Y axis

e. Bucket 4 extends the bounds by the smallest CoordinateHash in the positive Z axis

f. Bucket 5 extends the bounds by the smallest CoordinateHash in the negative Y axis

g. Bucket 6 extends the bounds by the smallest CoordinateHash in the negative Z axis

h. Bucket 7 extends by doubling the size of the positive X bound

i. Bucket 8 extends by doubling the size of the positive Y bound

j. Bucket 9 extends by doubling the size of the positive Z bound

k. Bucket 10 extends by doubling the size of the negative Y bound

l. Bucket 11 extends by doubling the size of the negative Z bound

m. Every 5 buckets repeat h-l

• The AxialBucketSet for the negative 'X' axis is defined below:

a. Bucket -1 is one smallest CoordinateHash unit from the self on the negative X axis

b. Bucket -2 extends away from the self by the smallest CoordinateHash in the

negative X axis

c. Bucket -3 extends the bounds by the smallest CoordinateHash in the positive Y

axis

d. Bucket -4 extends the bounds by the smallest CoordinateHash in the positive Z

axis

e. Bucket -5 extends the bounds by the smallest CoordinateHash in the negative Y

axis

f. Bucket -6 extends the bounds by the smallest CoordinateHash in the negative Z

axis

g. Bucket -7 extends by doubling the size of the negative X bound

h. Bucket -8 extends by doubling the size of the positive Y bound

i. Bucket -9 extends by doubling the size of the positive Z bound

j. Bucket -10 extends by doubling the size of the negative Y bound

k. Bucket -11 extends by doubling the size of the negative Z bound

l. Every -5 buckets repeat g-k

• The full AxialBucketSetX consists of the union of the negative and positive 'X' axis sets

• AxialBucketSetY and AxialBucketSetZ are defined exactly the same way, but by replacing

'X'->'Y', 'Y'->'Z', and 'Z'->'X'

• HMLM MUST create and maintain an index of all nodes known to it, sorted by

HashMatch value

• HMLM MUST create and maintain an index of all nodes known to it, sorted by how

physically close the nodes are

• HMLM MUST create and maintain an index of all nodes known to it, sorted by how

cheap to access the nodes are

• After the initial set of nodes are route-tracked, HMLM SHOULD use the Find Spiral Best

HashMatch Routine

a. This step is an Energy saving feature to attempt to get reasonable independent

routes when running the Find Global Best HashMatch Routine

• After the first run of the Find Spiral Best HashMatch Routine would have completed,

HMLM MUST use the Find Global Best HashMatch Routine

HMLM Find Spiral Best HashMatch Routine - HMLM SHOULD:

1. Start with Bucket 2 of the SpiralBucketSet and count route-tracked nodes

a. Once 25% of the route-tracked nodes have been counted, go to the next step

2. For each empty Bucket, ask a random node in a random physically adjacent bucket for

its top Y best HashMatch nodes within its buckets that have a good (50% or more)

overlap with the empty Bucket(s)

3. Add each retrieved node into the appropriate bucket(s) within the SpiralBucketSet and

begin tracking routes to it if it meets the criteria for doing so

4. Set a (very small) daily Energy allowance for attempting to find nodes within each Spiral

bucket

5. After the first run of this routine, attempt to schedule the finding of new nodes for the

time of day when it would be cheapest to do so

6. Set a (small) initial Energy allotment for attempting to find nodes within each Spiral

bucket

7. (MAY) Set a zero Energy allowance for attempting to find nodes within Spiral buckets

that exist entirely within the molten interior of the Body (if it exists)

8. (MAY) Set an extremely small (or zero) Energy allowance for attempting to find nodes

within Spiral buckets that exist entirely outside of the Body's atmosphere

9. (MAY) Decide to reduce the daily Energy allowance for a bucket if it continues to fail to

find a node within the bucket (exponential back-off)

HMLM Find Global Best HashMatch Routine

1. HMLM MUST choose among the first X nodes of its main HashMatch index of route-

tracked nodes and ask each node individually for its top Y best HashMatch nodes.

a. The local HMLM MUST sort these by HashMatch

b. If any of the new nodes would be in the closest k-bucket (by HashMatch) of all

route-tracked nodes, and aren't already tracked, the HMLM SHOULD find

'reasonable' routes to the new node(s)

c. As in S/Kademlia, the number of nodes in the Global k-bucket best-match set is

limited to some reasonably small number (like 256). If a newly found node is a

better HashMatch than the other limited number of Global tracked nodes, the

node SHOULD stop tracking routes to nodes that fall outside the limit

d. When choosing among the first X nodes, HMLM SHOULD choose randomly;

weighting by HashMatch

e. HMLM MAY consider looking at only a few of the first X nodes in a given round,

postponing looking at the other nodes until later rounds

f. The node MUST choose and advertise values that the node uses to define what it

means to be a 'reasonable' route:

i. A cap on the amount of latency per meter

ii. A lower limit on the amount of bandwidth the routes are capable of

handling

iii. A minimum Energy transfer ability

iv. A maximum Energy per meter for data transit

v. A maximum Energy for route-endpoint nodes in order to learn route data

vi. A maximum Energy for route-endpoint nodes in order to relay data

vii. A required range of word rates

viii. The MaxWordCount of IsoStream connection support

ix. The size of the IsoStreamHeader normalized to bits per meter

g. HMLM MAY set a total Energy budget for finding nodes and routes for each

round

h. The local HMLM MUST ask the newly route-tracked node individually for its top

Y best HashMatch nodes, repeating (a), (b), and (c) until there are no more new

nodes (with 'reasonable' routes) to add to the top percentage of route-tracked

nodes

i. If HMLM has a Energy budget, it should perform a depth first search

regarding this repetition

2. HMLM SHOULD use some mechanism to forget about old nodes that haven't been

heard from in a day or so

Different HMLMs could choose different definitions of 'reasonable' routes, which could provide

different optimizations for service quality. For example, there could be 'High', 'Medium', and

'Low' latency HMLMs: Endpoint nodes could choose to look for new nodes and routes via these

different HMLMs based on the needs of the endpoint node. It is also possible for an HMLM to

keep multiple sets of nodes and routes with different service qualities.

Once each day, HMLM SHOULD run the Find Global Best HashMatch Routine

Once a day, HMLM SHOULD run the Find Spiral Best HashMatch Routine

13.6.3 Breadcrumbs for HashMatch

One idea to (seriously) reduce the toll of link info distribution on the network, is to require

nodes to keep up a full (256?) set of unique multi-path Breadcrumb trails to each of the X best

global HashMatched nodes. This also makes long-distance µPkts possible with very little

overhead.

This might have scalability issues if none of the long-distance Breadcrumb trails are shared.

Obvious solutions to this scalability problem require a sharing mechanism that result in

logarithmic use of HW Breadcrumbs the further away from the source a switch is.

14 Distributed Data Storage

14.1 Immutable Data - Content Addressable Storage (CAS)
The IsoGrid system should distribute data such that it's likely that there is a copy nearby and

easy to find. Typically, a CAS is addresses content via its hash, and as such will distribute data

very randomly through the network.

In the IsoGrid’s CAS, A data set is fully and securely identified by 72 bytes:

1. Total amount of data stored in the set (8 B)

2. Skein-512 hash of data (64 B)

Notably, this construction leads the CAS to only be able to store immutable data: There is no

way to store dynamic data in a CAS repository. On the other hand, data in a CAS is self-

certifying, making validation easy without a trusted authority.

Any IsoGrid node can offer a CAS repository service in which it holds a data set in hopes of

being able to charge for retrieval later. A client might want to ensure the data is still retrievable

and provide Energy incrementally for such a service. To do so, it can provide Energy to the

repository to perform a proof of memory, which keeps the repository holding the data for

longer time periods. The repository and client could agree to exponentially increase the length

of time (at least up to some reasonable point).

Say, a node wishes to publish static webpage data. It would do so by placing the data on a CAS

repository nearby the producer. As part of storing the data, the CAS repository MUST also

provide for the placement of a LocatorHash to itself within a LocatorHashTree on the 8 best

HashMatch nodes in the Key Standard. If the publisher would like the data to be accessible

natively in other Key Standards, then the publisher MUST place the data in a CAS repository

within each the other Key Standards. A CAS repository MAY support multiple Key Standards

at once. The LocatorHash values MUST be stored within the LocatorHashTree for at least the

amount of time payed for by the repository. The node holding the LocatorHashTree MUST accept

all LocatorHash searches for the Energy advertised by the node. The node’s advertised Energy of a

LocatorHash search is the same for all LocatorHash values.

When a client node retrieves the data, it may choose to route that data through a repository

nearer to itself. This nearby repository can choose to cache the data for other local nodes to use.

The client may also choose to be a repository itself. Whenever a node becomes a repository for a

data set, it SHOULD add its LocatorHash to the best HashMatched LocatorHashTree just like above.

LocatorHashTree is a variant of a binary 'splay' tree that holds a set of LocatorHash values sorted

by GeoHash. The variance is that the 'splay' operation only occurs when a LocatorHash is added

to (or refreshed within) the list. A searcher wants to know both recently refreshed and nearby

LocatorHash values. So searching this list and returning all nodes visited along the search path

gives a very convenient mechanism for a first-order sort of 'recent' and a second order sort of

'nearby', getting more nearby and less recent as the list is traversed. Also convenient, is that the

retrieved list isn't likely to be very long (as the splay tree is statistically likely to be balanced,

and a balanced binary tree provides logarithmic node traversals to get to the leaves).

14.2 Mutable Data – GetNodeInfoFromLocatorHash
Mutable data must be retrieved via the routing system by using the LocatorHash to retrieve a

NodeInfo object that refers to the source of this mutable data. The LocatorHash of the server needs

to be known prior to retrieving the mutable data. Using the routing system in this way creates a

distributed hash table of NodeInfo objects. IsoGrid borrows the idea of Self-Certified names from

SFS:

SFS addresses remote files like so:

 /sfs/<Location>:<NodeID>

where <Location> is the network address of the server, and:

 <NodeID> = hash(<Location> + PublicKey)

The name of an SFS file path certifies the server directly. The client can verify the public key

offered by the host before securing traffic via a key exchange. SFS instances use a global

namespace where name allocation is fully distributed to the endpoint nodes via cryptographic

means.

In the IsoGrid implementation of the same idea, <Location> and <NodeID> both exist within the

LocatorHash of the IsoGrid service node being named. Given that HMLM ensures that the node

will have an EccFlow with all the nodes with similar LocatorHash values, this provides logical,

secure, and convenient places for the node to store a mutable NodeInfo object that describes the

server. A storing node MUST validate that this mutable NodeInfo object comes from the

described node before relaying it to any clients that try to lookup the name; this prevents

denial-of-service attacks that try to flood the repository with bogus NodeInfo objects.

A NodeInfo object consists of the following data:

• NodeAdvertisement

• Maybe all InboundLinkAdvertisements (variable size)

• And/Or perhaps a file index?

• Signature (41,000 Bytes)

TODO: Specify a ‘GetNodeInfoFromLocatorHash’ SessionProtocolId

15 Bootstrapping Discussion
In the early stages of implementing the IsoGrid, there won't be any widely-deployed native-

IsoGrid services. The only practical use of the IsoGrid during the early stages would be as a

gateway to the existing Internet: The IsoGrid Protocol Stack will need to act as a reasonably

inexpensive alternative to traditional Internet Service Providers. Two of the biggest costs of

traditional Internet Service Providers are: 1) infrastructure for connectivity over the last-mile to

customers, and 2) customer acquisition costs. With a local IsoGrid, last-mile infrastructure is

provided by the customer. Customer acquisition costs might be significantly reduced because

the IsoGrid is likely to spread from neighbor to neighbor by word-of-mouth, precisely for the

purpose of getting cheaper internet access. The early adopters are likely to be willing to start the

IsoGrid before financial benefits are clear, due to being dissatisfied with their existing ISP

options (or lack thereof). Once a small IsoGrid is started, the connected participants have a

strong financial, performance, and efficiency incentive to connect up more of their neighbors.

Once a significant portion of the population of developed countries start using the IsoGrid for

Internet access, the hardware and software costs will get much lower. Having a mesh topology

allows for implementations with very simple initial setup and maintenance. When these begin

to appear, it is our belief that the IsoGrid will spread to developing countries, providing cheap,

scalable, and dependable connectivity to the world.

15.1 IpVpn
TODO: Specify this in more detail.

CreateIpVpn is a service that is run on top of an EccFlow. The client is a node on the IsoGrid, the

server node is dual-homed with both IsoGrid and a connection to an IP network (even behind a

NAT). When executed, an async EccFlowSession is created that will be used by the client to send

packets via the server node directly to the target IP network (which may have a gateway to the

IP Internet). A second EccFlowSession is also created that is used by the server to route incoming

packets back to the client node. The EccFlow layer is responsible for maintaining sufficient

Energy to be able to send data heading toward the client. IpVpn uses a simple Point to Point

Protocol (PPP). Both the service and client nodes are expected to layer a TCP/IP stack on top of

the PPP link.

15.2 Network Management
Initially, the early adopters of the IsoGrid will have to manage their own networking equipment

and handle Energy settlement between neighbors. However, over time, we might expect to see

the emergence of companies offering "Network Management" services. These netMan services

are likely to attempt various business models:
o Consumer leases equipment, netMan service provides flat-rate internet service
o Consumer owns equipment, netMan service handles software management and takes a

cut on data exchanges between neighbors
o Open source
o Etc.

Many of these models might rely on consumer brand loyalty: If a brand of netMan becomes

known for good service for the value, it's likely to gain customers from competitors. A brand

with security holes is likely to suffer. Flat rate might die out as policing a commons can get

expensive.

15.3 Micro-Transfers of Energy Within a Computer
The IsoGrid relies on micro-transfers of Energy to fairly allocate the resources required to

transmit µPkts and streams. There could be an obvious desire to have multiple network services

and/or multiple network clients each maintain independent Energy ledgers, even when

operating in the same PC. One obvious solution to this problem is to implement a software

https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://en.wikipedia.org/wiki/Point-to-Point_Protocol

IsoGrid switch that conforms to the basic IsoGrid open Protocol within a PC. It also seems

obvious and likely that such support might grow to include HW acceleration of such a SW

switch. Another obvious solution would be to create hypervisor/virtualization of a HW switch.

16 Undefined Higher-Level Services and Protocols
There are several services and protocols defined at a higher level that readers might find

interesting. These services and protocols are intentionally left out of the global IsoGrid Protocol

specification to allow the overall system more flexibility over time.

Distributed Naming
We should separate the two reasons for name resolution: 1) canonical naming for programs to

reference other programs, and 2) simple names for humans to communicate addresses to others.

For the canonical names, the programmer doesn't need high-value (easy to remember) names,

since the software can have the name encoded within it. In this case, the name may include

ownership rights, since there's more than enough 256-bit names to go around. This is

standardized for the IsoGrid with the concept of the LocatorHash.

However, the simple names should not be 'owned'. For example, if I wanted to name myself

'tree', this doesn't mean the rest of the world (or universe) is obliged to refer all those who ask

for 'tree' to me. Instead of ownership, those that do the naming should pay everyone else for the

privilege of monopolizing that name. Even with this payment, there should not be an

'ownership' right, merely a lease.

The problem of finding services by a simple name exists in the IsoGrid just like the IP Internet.

The problem appears to be substantially identical in both network designs. The only difference

is that the IsoGrid can require micro-payments to handle name lookups: Solving one of the big

Denial of Service attack vectors on the IP Internet today, and perhaps making it possible to

design distributed protocols for name lookup that don’t rely on blockchain technology. Not that

blockchain technology is bad, just making the point that the designers of IsoGrid aren’t doing

all the work of designing the IsoGrid merely to sell you on a technology that relies exclusively

on a blockchain.

Low Latency Game Streaming
With low latency access to a distributed network, it's possible to implement game streaming

services; where folks share (or rent) game console access from your neighbors. Generalizing,

this may evolve into distributed compute.

Alarm Systems

The ability of neighbors (and perhaps even neighborhoods) to link up their alarm systems can

reduce the cost and/or increase the effectiveness of the systems. Additionally, it isn't necessary

that the system be centralized, and smaller systems are less of a target for hackers.

IsoGrid Internet Service Providers

The success or failure of IsoGrid basically hinges on whether it's cheaper or less of a hassle to

have an IsoGrid-based ISP instead of a Traditional ISP, like Comcast or Verizon.

IsoGrid-based ISPs are referred to as Minimal ISPs (or minISPs) and are very similar to

Traditional ISPs except that they don't run links all the way to the customer, instead they rely

on a local IsoGrid to provide the last-mile connectivity to and from their customers. Only

customers that have at least one or (hopefully) more connections to an IsoGrid can use a minISP.

A minISP must follow all the rules and regulations that apply to ISPs.

EccFlow to Data-Center based personal VPN
A client that has created many IpVpn sessions to various dual-homed server nodes could link up

with a remote node on the IP Internet and then layer another EccFlow on top of all these links.

Another IpVpn service can then be layered on top of that, allowing the client node to access the

IP Internet via the remote VPN node. This acts like a multi-path redundant VPN (as long as the

remote VPN itself has good uptime. This may not be necessary if instead the client can just hop

from one IpVpn to another without affecting applications layered on top.

IP Transit
Tunneling other network protocols on top of EccFlow should be efficient, with low overhead.

Large Scale, High-Precision Timing

There are a number of large scale projects that aren't practical with the IP Internet, but could be

undertaken if the IsoGrid were massively successful. One property of a full-scale IsoGrid is a

very precise synchronized time source. With excellently synchronized clocks it's potentially

possible to build:

1. Cheap differential-GPS, everywhere

2. Good-signal, Terrestrial GPS in urban areas

3. Indoor GPS

4. Distributed deep-space antenna arrays

